Summary of Some Statistical Methods to Test Hypothés,es

Scale of
measurement

Type of experiment

Two treatment
groups consisting
of different
individuals

Three or more
treatment groups
consisting of
different
individuals

Before and after a
single treatment
in the same
individuals

Multiple Association
treatments in the between two
* same individuals variables.

Interval {and drawn
from normally
distributed
populations*)

Nominal

Ordinal¥

Survival time

Unpaired t test
(Chapter 4)

Chi-square
analysis-of-
contingency
table {Chapter 5)

Mann-Whitney
rank-sum test
(Chapter 10)

Log-rank test or
Gehan's test
(Chapter 11)

Analysis of variance
" {Chapter 3)

Chi-square analysis-’

of-contingency
table (Chapter 5)

Kruskal-Wallis
statistic
(Chapter 10)

Paired t test
{Chapter 9)

McNemar's test
{Chapter 9)

Wilcoxon signed-
rank test
(Chapter 10)

Linear regression,
Pearson
product-moment
correlation, or
Bland-Altman
analysis (Chapter 8)

Relative rank or odds
ratio (Chapter 5)

Repeated-measures
analysis of
variance (Chapter 9)

Cochrane Qt

Friedman statistic
(Chapter 10)

Spearman rahk-
correlation.
(Chapter 8)

*If the assumption of normally dlstnbuted populations is not met, rank the observations and use the methods for data measured

on an ordinal scale.

TNot covered in this text.

*Or interval data that are not necessarily normally distributed.
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Hunches and intuitive impressions are essential for getting

the work started, but it is only through the quality of the
numbers at the end that the truth can be told. *

Lewis Thomas

Memorial Sloan-Kettering Cancer Center

*L. Thomas, “Biostatistics in Medicine,” Science 198:675, 1977.
Copyright 1977 by the American Association for the Advancement

of Science.
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Preface

I have always thought of myself as something of an outsider and troublemaker,
so it is with some humility that I prepare the fifth edition of this book, 20 years
after the first edition originally appeared. Then, as now, the book had an un-
usual perspective: that many papers in the medical literature contained avoid-
able errors. At the time, the publisher, McGraw-Hill, expressed concern that
this “confrontational approach” would put off reader and hurt sales. They also
worried that the book was not organized like a traditional statistics text.

Time has shown that.the biomedical community was ready for such an ap-
proach and the book has achieved remarkable success. Over time, it has evolved
to include more topics, including power and sample size, more on multiple
comparison procedures, and survival analysis. This ﬁfth edition adds more on
multiple comparison testing—the Holm test, which seems superior to-the older
Bonferroni, SNK, and Tukey tests—and a discussion of relative risks and odds
ratios. It also replaces many of the examples that date from the first edition of
this book with more current examples. In doing so, however, I have maintained
the book’s original tone and attitude.

This book has its origins in 1973, when I was a postdoctoral fellow. Many
friends and colleagues came to me for advice and explanations about biostatis-
tics. Since most of them had less knowledge of statistics than I did, I tried to
learn what I needed to help them. The need to develop quick and intuitive, yet

XV



Xvi PREFACE

correct, explanations of the various tests and procedures slowly evolved into a
set of stock explanations and a two-hour slide show on common statistical er-
rors in the biomedical literature and how to cope with them. The success of this
slide show led many people to suggest that I expand it into an introductory
book on biostatistics, which led to the first edition of Primer of Biostatistics
in 1981. :

As a result, this book is oriented as much to the individual reader— be he
or she student, postdoctoral research fellow, professor, or practitioner—as to
the student attending formal lectures.

This book can be used as a text at many levels. It has been the required
text for the biostatistics portion of the epidemiology and biostatistics course re-
quired of all medical students at the University of California, San Francisco.
This course covered the material in the first eight chapters in eight 1-hour lec-
tures. The material is discussed along with other epidemiology in an additional
problem session each week. The book is also used for a more abbreviated set of
lectures on biostatistics (covering the first three chapters) given to our dental
students. In addition, it has served me (and others) well in a one quarter four-
unit course in which we cover the entire book in depth. This course meets for
3 lecture hours and has a 1 hour problem session. It is attended by a wide vari-
ety of students, from undergraduates through graduate students and postdoc-
toral fellows, as well as an occasional faculty member.

Since this book includes the technical material covered in any introductory
statistics course, it is suitable as either the primary or supplementary text for a
general undergraduate introductory statistics course (which is essentially the level
at which this material is taught in medical schools), especially for a teacher seek-
ing a way to make statistics relevant to students majoring in the life sciences.

This book differs from other introductory texts on biostatistics in several
ways, and it is these differences which seem to account for the book’s popularity.

First, it is based on the premise that much of what is published in the
biomedical literature uses dubious statistical practices, so that a reader who
takes. what he reads at face value may often be absorbing erroneous informa-
tion. Most of the errors (at least as they relate to statistical inference) center on
misuse of the ¢ test, probably because the people doing the research were unfa-
miliar with anything else. The ¢ test is usually the first procedure presented in a
statistics book that will yield the highly prized P value. Analysis of variance, if
presented at all, is deferred to the end of the book to be ignored or rushed
through at the end of the term. Since so much is published that should probably
be analyzed with analysis of variance, and since analysis of variance is really
the paradigm of all parametric statistical tests, I present it first, then discuss the
t test as a special case.

Second, in keeping with the problems I see in the literature, there is a dis-
cussion of multiple comparison testing.
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Third, the book is organized around hypothesis testing and estimation of
the size of treatment effects, as opposed to the more traditional (and logical
from a theory of statistics perspective) organization that goes from one-sample
to two-sample to. general k-sample estimation and hypotheses testing proce-
dures. I'believe my approach goes directly to the kinds of problems one most
commonly encounters when reading about or doing biomedical research.

* The examples are mostly based on interesting studies from the literature
and are reasonably true to the original data. I have, however, taken some liberty
in recreating the raw data to simplify the statistical problems (for example,
making the sample sizes equal) so that I could focus on the important intuitive
ideas behind the statistical procedures rather than getting involved in the alge-
bra and arithmetic. When the text only discusses the case of equal sample sizes,
the formulas for the more general unequal sample size case are included in an
appendix.

It is worth mentioning a few items I have not added. Some people sug-
gested that I add an explicit discussion of probability, calculus and expected
values, rather than the implicit discussion of them in the existing text. Others
suggested that I make the distinction between P and o more precise. (I pur-
posefully blurred this distinction.) I also was tempted to use the platform this
book has created within the research community to popularize multivariate sta-
tistical methods—in particular multiple regression— within the biomedical
community. These methods have been applied widely with good results in ‘the
social sciences and I have found them very useful in my work on cardiac fune-
tion and tobacco control. I decided against making these changes, however, be-
cause they would have fundamentally changed the scope and tone of the book,
which are the keys to its success.*

As with all books, there are many people who deserve thanks. Julien
Hoffman gave me the first:really clear and practically oriented course in biosta-
tistics that allowed me to stay one step ahead of the people who came to me for
expert help. His continuing interest and discussion of statistical issues has
helped me learn enough to even think of writing this book. Philip Wilkinson
and Marion Nestle suggested some of the best examples and also offered very
useful criticisms of the manuscript. Mary Giammona offered many useful criti-
cisms from a student’s point of view and helped develop the original problem
sets. Bryan Slinker, Jim Lightwood, and Kristina Thayer helped develop new
problems included in the later editions. Virginia Ernster and Susan Sacks not
only offered many helpful suggestions, but also unleashed their 300 first- and

*These suggestions did, however, lead to a new book on the subject of multiple
regression and analysis of variance, written with the same approach in Primer of
Biostatistics. 1t is: Primer of Applied Regression and Analysis of Variance (2 ed.),
S. A. Glantz and B. K. Slinker, New York: McGraw-Hill, 2000.
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second-year medical students on the manuscript for the first edition when they
graciously offered to use it as the required text for their course. Bryan Slinker,
Ken Resser, B. S. Appleyard, Robin Booth, Kristina Thayer, and others, who
served as teaching assistants to me in the course I taught from this book, of-
fered many insightful criticisms and concrete suggestions on how to sharpen
the explanations, examples, and problems in the book.

Mary Hurtado typed the manuscript for the original version of this book,
with amazing speed and accuracy. Thomas Summer, Sonja Bock, and Mike
Matrigali helped with the original text-editing with UNIX. Dale Johnson pre-
pared the original illustrations.

Since the first edition of this book in 1981, many thmgs have changed.
There is a much wider appreciation for the need to use appropriate statistical
methods in biomedical research than there was in 1981. While the problem per-
sists, many journals have recognized the problems caused by ignorance of sta-
tistical issues among many scientists and have explicitly included biostatistical
considerations in the review process for manuscripts. Indeed, in a classic exam-
ple of the fact that the individual who complains the loudest gets put in charge,
I now serve as an Associate Editor of the Journal of the American College of
Cardiology with special responsibility for reviewing tentatively accepted manu-
scripts for statistical problems prior to publication. About half the papers still
have some sort of problem (of varying severity), but we catch them before pub-
lication now.

Finally, I thank the many others who have used the book, both as students
and as teachers of biostatistics, who took the time to write me questions, com-
ments, and suggestions on how to improve it. I have done my best to heed their
advice in preparing this fifth edition.

Many of the pictures in this book are d1rect descendants of my original
slides. In fact, as you read this book, you would do best to think of it as a slide
show that has been set to print. Most people who attend my slide show leave
more critical of what they read in the biomedical literature. After I gave it to the
MD-PhD candidates at the University of California, San Francisco, I heard that
the candidates gave every subsequent speaker a hard time about misuse of the
standard error of the mean as a summary statistic and abuse of ¢ tests. This book
has had a similar effect on many others. Nothing could be more flattering or
satisfying to me. I hope that this book will continue to make more people more
critical and help fmprove the quality of the biomedical literature and, ulti-
mately, the care of people.

Stanton A. Glantz



Chapter 1

Biostatistics and Clinical
Practice

In an ideal world, editors of medical journals would do such an excel-
lent job of ensuring the quality and accuracy of the statistical methods
of the papers they publish that readers with no personal interest in this
aspect of the research work could simply take it for granted that any-
thing published was correct. If past history is any guide, however, we
will probably never reach that ideal. In the meantime, consumers of the
medical literature—practicing physicians and nurses, biomedical re-
searchers, and health planners—must be able to assess statistical meth-
ods on their own in order to judge the strength of the arguments for or
against the specific diagnostic test or therapy under study. As discussed
below, these skills will become more important as financial constraints
on medical practice grow.

THE CHANGING MEDICAL ENVIRONMENT

_ The practice of medicine, like the delivery of all medical services, is
entering a new era. Until the second quarter of the last century,

1



2 CHAPTER 1

medical treatment had little positive effect on when, or even whether,
sick people recovered. With the discovery of ways to reverse the bio-
chemical deficiencies that caused some diseases and the development
of antibacterial drugs, it became possible to cure sick people. These
early successes and the therapeutic optimism they engendered stimu-
lated the medical research community to develop a host of more pow-
erful agents to treat heart disease, cancer, neurologic disorders, and
other ailments. These successes led society to continue increasing the
amount of resources devoted to the delivery of medical services. In
1997, the United States spent $1.1 trillion (13.5 percent of the gross
domestic product) on medical services. In addition, both the absolute
amount of money and the fraction of the gross domestic product de-
voted to the medical sector have grown rapidly (Fig. 1-1). Today,
many government and business leaders view this continuing explosion
with concern. Containing medical care costs has become a major fo-
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Figure 1-1 (A) Total annual expenditures for medical services in the United
States between 1960 and 1997. (B) Expenditures for medical services as a per-
centage of the gross domestic product. (Source: Statistical Abstract of the United
States, 1999. Washington DC: U.S. Department of Commerce, pp. 118, 459.)



BIOSTATISTICS AND CLINICAL PRACTICE . 3

cus of activity for both state and federal governments and the private
sector. . .

During the period of rapid growth that is probably ending, there
were ‘ample resources to enable physicians and other health care
providers to try tests, procedures, and therapies with little or no restric-
tion on their use. As a result, much of what is considered good medical
practice developed without firm evidence demonstrating that these
practices actually help the patient. Even for effective therapies, there
has been relatively little systematic evaluation of precisely which pa-
tients these therapies help.* In addition to wasting money, these prac-
tices regularly expose people to powerful drugs, surgery, or other inter-
ventions with potentially dangerous side- effects in cases where such
treatment does not do the patient any good.

What does this have to do with biostatistics?

‘As the tesources available to provide medical care grow more
slowly, health professionals will have to identify more clearly which
tests, procedures, and therapies are of demonstrated value. In addition
‘to assessing whether or not one intervention or another made a differ-
ence, it will become important to assess how great the difference was.
Such knowledge will play a growing role in decisions on how to allo-
cate medical resources among potential health care providers and
their patients. These issues are, at their heart, statistical issues. Be-
cause of factors such as the natural biological variability between in-
dividual patients and the placebo effect,’ one usually cannot conclude
that some therapy was beneficial on the basis of simple experience.
For example, about one-third of people given placebos in place of
pain killers experience relief. Biostatistics provides the tools for turn-
ing clinical and laboratory experience into'quantitative statements
about whether and by how much a treatment or procedure affected a
group of patients. . ,

~In addition to studies of procedures and therapies, researchers are
beginning to study how physicians, nurses, and other health care

*A. L. Cochrane, Effectiveness and Efficiency: Random Reflections on Health
Services, Nuffield Provincial Hospitals Trust, London, 1972.

1The placebo effect is a response attributable to therapy per se as opposed to the
therapy’s .specific properties."Examples of placebos are an injection of saline, sugar
pill, and surgically opening and closing without performing any specific surgical pro-
cedure.
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professionals go about their work. For example, one study* demon-
strated that patients with uncomplicated pyelonephritis, a common kid-
ney infection, who were treated in accordance with the guidelines in the
Physicians’ Desk Reference remained in the hospital an average of 2
days less than those who were not treated appropriately. Since hospital-
ization costs constitute a sizable element of total medical care expendi-
tures, it would seem desirable to minimize the length of stay when it
does not affect the patient’s recovery adversely. Traditionally, there
have been few restrictions on how individual physicians prescribed
drugs. This study suggests that steps making physicians follow recom-
mended prescribing patterns more closely could significantly reduce
hospitalization and save money without harming the patient. Such evi-
dence could be used to support efforts to restrict the individual physi-
cian’s freedom in using prescription drugs.

.Hence, evidence collected and analyzed using biostatistical meth-
ods can potentially affect not only how physicians choose to practice
medicine but what choices are open to them. Intelligent participation in
these decisions requires an understanding of biostatistical methods and
models that will permit one to assess the quality of the evidence and the
analysis of that evidence used to support one position or another.

Clinicians have not, by and large, participated in debates on these
quantitative questions, probably because the issues-appear too technical
and seem to have little impact on their day-to-day activities. As pres-
sure for more effective use of medical resources grows, clinicians will
have to be able to make more informed judgments about claims of med-
ical efficacy so that they can participate more intelligently in the debate
on how to allocate medical resources. These judgments will be based in
large part on statistical reasoning.

WHAT DO STATISTICAL PROCEDURES TELL YOU?

Suppose researchers believe that administering some drug increases
urine production in proportion to the dose and to study it they give dif-
ferent doses of the drug to five different people, plotting their urine
production against the dose of drug. The resulting data, shown in

*D. E. Knapp, D. A. Knapp, M. K. Speedie, D. M. Yaeger, and C. L. Baker, “Relation-
ship of Inappropriate Drug Prescribing to Increased Length of Hospital Stay,” Am. J. Hosp.
Pharm., 36:1334 —1337, 1979. This study will be discussed in detail in Chaps. 3 to 5.
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Figure 1-2 (A) Results of an experiment in which researchers administered
five different doses of a drug to five different people and measured their daily
urine production. Qutput increased as the dose of drug increased in these five
people, suggesting that the drug is an effective diuretic in all people similar to
those tested. (B) If the researchers had been able to administer the drug to all
people and measure their daily urine output, it would have been clear that
there is no relationship between the dose of drug and urine output. The five
specific individuals who happened to be selected for the study in panel A are
shown as shaded points. It is possible, but not likely, to obtain such an unrep-
resentative sample that leads one to believe that there is a relationship be-
tween the two variables when there is none. A set of statistical procedures
~ called tests of hypotheses permits one to estimate the chance of getting such
an unrepresentative sample.

Fig. 1-2A, reveal a strong relationship between the drug dose and daily
urine production in the five people who were studied. This result would
probably lead the investigators to publish a paper stating that the drug
was an effective diuretic. _ ’

The only statement that can be made with absolute certainty is that
as the drug dose increased, so did urine production in the five people in
the study. The real question of interest, however, is: How is the drug
likely to affect all people who receive it? The assertion that the drug is
effective requires a leap of faith from the limited experience shown in
Fig. 1-24 to all people. Of course, one cannot know in advance how all
people will respond to the drug.
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Now, pretend that we knew how every person who would ever re-
ceive the drug would respond. Figure 1-2B shows this information.
There is no systematic relationship between the drug dose and urine
production! The drug is not an effective diuretic.

How could we have been led so far astray? The shaded points in
Fig. 1-2B represent the specific individuals who happened to be stud-
ied to obtain the results shown in Fig. 1-2A. While they are all mem-
bers of the population of people we are interested in studying, the
five specific individuals we happened to study, taken as a group,
were not really representative of how the entire population of people
responds to the drug.

Looking at Fig. 1-2B should co_nvince you that obtaining such an
unrepresentative sample of people, though possible, is not very likely.
One set of statistical procedures, called tests of hypotheses, permits you
to estimate the likelihood of concluding that two things are related as
Fig. 1-2A suggests when the relationship is really due to bad luck in se-
lecting people for study and not a true effect of the drug investigated. In
this example, we will be able to estimate that such a sample of people
should turn up in a study of the drug only about 5 times in 1000 when
the drug actually has no effect. ‘ :

Of course it is important to realize that although biostatistics is a
branch of mathematics, there can be honest differences of opinion
about the best way to analyze a problem. This fact arises because all
statistical methods are based on relatively simple mathematical models
of reality, so the results of the statistical tests are accurate only to the
extent that the reality and the mathematical model underlymg the statis-
tical test are in reasonable agreement.

WHY NOT DEPEND ON THE JOURNALS?

Aside from direct personal experience, most health care professionals
rely on medical journals to keep them informed about the current con-
cepts on how to diagnose and treat their patients. Since few members of
the clinical or biomedical research community are conversant in the use
and interpretation of biostatistics, most readers assume that when an ar-
ticle appears in a journal, the reviewers and editors have scrutinized
every aspect of the manuscript, including the use of statlstlcs Unfortu-
nately, thls is often not so.
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Throughout the 1950s through the 1970s, several critical reviews*
of the use of statistics in the general medical literature consistently
found that about half the articles used incorrect statistical methods. This
situation led many of the larger journals to incorporate formal statisti-
cal reviews (by a statistician) into the peer review process. More recent
reviews of the use of statistical methods in the medical literature have
concentrated on the efficacy of providing these secondary statistical re-
views of tentatively accepted papers. These reviews have revealed that
about half (or more) of the papers tentatively accepted for publication
have statistical problems. For the most part, these errors are resolved
before publication, together with substantive issues raised by the other
(content) reviewers, and the rate of statistical problems in the final pub-
lished papers is much lower.

The fact remains, however, that most Joumals still do not provide a
complete secondary statistical review of all papers, so the fraction of
published papers containing statistical errors is probably still about
50% for many journals. Indeed, reviews of specialty journals continue
to show a high frequency of statistical problems in published papers.

*Q. B. Ross, Jr. (“Use of Controls in Medical Research.” JAMA, 145:72-75, 1951)
evaluated 100 papers published in Journal of the American Medical Association,
American Journal of Medicine, Annals of Internal Medicine, Archives of Neurology and
Psychiatry, and American Journal of Medical Sciences during 1950. R. F. Badgley (“An
Assessment of Research Methods Reported in 103 Scientific Articles from Two Canadian
Medical Journals,” Can M.A.J., 85:256-260, 1961) evaluated 103 papers published in the
Canadian Medical Association Journal and Canadian Journal of Public Health during
1960. S. Schor and I. Karten (“Statistical Evaluation of Medical Journal Manuscripts,”
JAMA, 195:1123-1128, 1966) evaluated 295 papers published in Annals of Internal
Medicine, New England Journal of Medicine, Archives of Surgery, American Journal of
Medicine, Journal of Clinical Investigation, American Archives of Neurology, Archives of
Pathology, and Archives of Internal Medicine during 1964. S. Gore, 1. G. Jones, and E. C.
Rytter (“Misuses of Statistical Methods: Critical Assessment of Articles in B.M.J. from
January to March, 1976, Br. Med. J. 1(6053):85-87, 1977) evaluated 77 papers pub-
lished in the British Medical Journal in 1976.

tMore recent reviews, while dealing with a more limited selection of journals, have
shown that this problem still persists. See S. J. White, “Statistical Errors in Papers in the
British Journal of Psychiatry,” Br. J. Psychiatry, 135:336-342,.1979; M. J. Avram,
C. A. Shanks, M. H. M. Dykes, A. K. Ronai, W. M. Stiers, “Statistical Methods in
Anesthesia Articles: An Evaluation of Two American Journals during Two Six-Month Peri-
ods,” Anesth. Analg. 64:607-611, 1985; J. Davies, “A Critical Survey of Scientific Meth-
ods in Two Psychiatry Journals,” Aust. N.Z. J. Psych., 21:367-373, 1987; D. F. Cruess,
“Review of the Use of Statistics in The American Journal of Tropical Medicine and Hy-
giene for January—December 1988," Am. J. Trop. Med. Hyg., 41:619-626, 1990; C. A.
Silagy, D. Jewell, D. Mant, “An Analysis of Randomized Controlled Trials Published in

continued
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When confronted with this observation—or the confusion that arises
when two seemingly comparable articles arrive at different conclusions—
people often conclude that statistical analyses are maneuverable to one’s
needs, or are meaningless, or are too difficult to understand.

Unfortunately, except when a statistical procedure merely confirms
an obvious effect (or the paper includes the raw data), a reader cannot
tell whether the data in fact support the author’s conclusions or not.
Ironically, the errors rarely involve sophisticated issues that provoke
debate between professional statisticians but are simple mistakes, such
as neglecting to include a control group, not allocating treatments to
subjects at random, or misusing elementary tests of hypotheses. These
errors generally bias the study on behalf of the treatments.

The existence of errors in experimental design and misuse of ele-
mentary statistical techniques in a substantial fraction of published pa-
pers is especially important in clinical studies. These errors may lead
investigators to report a treatment or diagnostic test to be of statistically
demonstrated value when, in fact, the available data fail to support this
conclusion. Physicians who believe that a treatment has been proved ef-
fective on the basis of publication in a reputable journal may use it for
their patients. Because all medical procedures involve some risk, dis-
comfort, or cost, people treated on the basis of erroneous research
reports gain no benefit and may be harmed. On the other hand, errors
could produce unnecessary delay in the use of helpful treatments. Sci-
entific studies which document the effectiveness of medical procedures
will become even more important as efforts grow to control medical
costs without sacrificing quality. Such studies must be designed and in-
terpreted correctly.

In addition to indirect costs, there are significant dlrect costs asso-
ciated with these errors: money is spent, animals may be sacrificed, and
human subjects may be put at risk to collect data that are not interpreted
correctly.

(continued) the US Family Medicine Literature, 1987-1991," J. Fam. Pract. 39:
236-242, 1994; M. H. Kanter and J. R. Taylor, “Accuracy of Statistical Methods in Zrans-
JSusion: A Review of Articles from July/August 1992 through June 1993, Transfusion
34:697-701, 1994; N. R. Powe, J. M. Tielsch, O. D. Schein, R. Luthra, E. P. Steinberg,
“Rigor of Research Methods in Studies of the Effectiveness and Safety of Cataract Extrac-
tion with Intraocular Lens Implantation,” Arch. Ophthalmol. 112:228-238, 1994.
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WHY HAS THE PROBLEM PERSISTED?

Because so many people are making these errors, there is little peer pres-
sure on academic investigators to use statistical techniques carefully. In
fact, one rarely hears a word of criticism. Quite the contrary, some inves-
tigators fear that their colleagues—and especially reviewers —will view
a correct analysis as unnecessarily theoretical and complicated.

The journals are the major force for quality control in scientific
work. Some journals have recognized that the regular reviewers often
are not competent to review the use of elementary statistics in papers
submitted for publication, and these journals have modified their refer-
eeing process accordingly. Generally, they have someone familiar with
statistical methods review manuscripts before they are accepted for
publication. This secondary statistical review, generally conducted be-
fore a decision is made to invite revision of a paper, often leads to sub-
stantial revision in the tests used for statistical analysis, the presentation
of the results, or the conclusions that are drawn.*

Most editors, however, apparently still assume that the reviewers
will examine the statistical methodology in a paper with the same level
of care that they examine the clinical protoco!l or experimental prepara-
tion. If this assumption were correct, one would expect all papers to de-
scribe, in detail as explicit as the description of the protocol or prepara-
tion, how the authors have analyzed their data. Yet, often the statistical
procedures used to test hypotheses in medical journals are not even
identified. It is hard to believe that the reviewers examined the methods
of data analysis with the same diligence with which they evaluated the
experiment used to collect the data.

In short, to read the medical literature intelligently, you will have to
be able to understand and evaluate the use of the statistical methods used
to analyze the experimental results as well as the laboratory methods used
to collect the data. Fortunately, the basic ideas needed to be an intelligent
reader—and, indeed, to be an intelligent investigator—are quite simple.
The next chapter begins our discussion of these ideas and methods.

*For a discussion of the experiences of two journals, see M. J. Gardner and J. Bond,
“An Exploratory Study of Statistical Assessment of Papers Published in the British Med-
ical Journal,” JAMA 263:1355-1357, 1990 and S. A. Glantz, “It Is All in the Numbers,”
J. Am. Coll. Cardiol. 21:835-837, 1993.



Chapter 2

How to Summarize Data

An investigator collecting data generally has two goals: to obtain de-
scriptive information about the population from which the sample was
drawn and to test hypotheses about that population. We focus here on
the first goal: to summarize data collected on a single variable in a way
that best describes the larger, unobserved population.

When the value of the variable associated with any given individ-
ual is more likely to fall near the mean (average) value for all individu-
als in the population under study than far from it and equally likely to
be above the mean and below it, the mean and standard deviation for
the sample observations describe the location and amount of variability
among members of the population. When the value of the variable is
more likely than not to fall below (or above) the mean, one should re-
port the median and values of at least two other percentiles.

To understand these rules, assume that we observe all members of
the population, not only a limited (ideally representative) sample as in
an experiment. :

10
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For example, suppose we wish to study the height of Martians and
to avoid any guesswork, we visit Mars and measure the entire
population —all 200 of them. Figure 2-1 shows the resulting data with
each Martian’s height rounded to the nearest centimeter and represented
by a circle. There is a distribution of heights of the Martian population.
Most Martians are between about 35 and 45 cm tall, and only a few (10
out of 200) are 30 cm or shorter or 50 cm or taller.

Having successfully completed this project and demonstrated the
methodology, we submit a proposal to measure the height of Venusians.
Our record of good work assures funding, and we proceed to make the
measurements. Following the same conservative approach, we measure
the heights of all 150 Venusians. Figure 2-2 shows the measured
heights for the entire population of Venus, using the same presentation
as Fig. 2-1. As on Mars, there is a distribution of heights among mem-
bers of the population, and all Venusians are around 15 cm tall, almost
all of them being taller than 10 cm and shorter than 20 cm.

Comparing Figs. 2-1 and 2-2 demonstrates that Venusians are
shorter than Martians and that the variability of heights within the
Venusian population is smaller. Whereas almost all (194 of 200) the
Martians’ heights fell in a range 20 cm wide (30 to 50 cm), the
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Figure 2-1 Distribution of heights of 200 Martians, with each Martian’s height
represented by a single circle. Notice that any individual Martian is more likely to
have a height near the mean height of the population {40 cm) than far from it and
is equally likely to be shorter or taller than average.
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Figure 2-2 Distribution of heights of 150 Venusians. Notice that although the
average height and dispersion of heights about the mean differ from those of
Martians (Fig. 2-1), they both have a similar bell-shaped appearance.

analogous range for Venusians (144 of 150) is only 10 cm (10 to 20
cm). Despite these differences, there are important similarities between
these two populations. In both, any given member is more likely to be
near the middle of the population than far from it and equally likely to
be shorter or taller than average. In fact, despite the differences in pop-
ulation size, average height, and variability, the shapes of the distribu-
tions of heights of the inhabitants of both planets are almost identical. A
most striking result!

We can now reduce all this information to a few numbers, called
parameters of the distribution. Since the shapes of the two distributions
are similar, we need only describe how they differ; we do this by com-
puting the mean height and the variability of heights about the mean.

THE MEAN

To indicate the location along the height scale, define the population
mean to be the average height of all members of the population.
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Population means are often denoted by p, the Greek letter mu. When
the population is made up of discrete members,

sum of valueé, e.g., heights, for
each member of population

" Population mean = -
P number of population members

The equivalent mathematical statement is

in which X, Greek capital sigma, indicates the sum of the value of
the variable X for all N members of the population. Applying this defin-
ition to the data in Figs. 2-1 and 2-2 yields the result that the mean
height of Martians is 40 cm and the mean height of Venusians is 15 cm.
These numbers summarize the qualitative conclusion that the distribu-
tion of heights of Martians is higher than the distribution of heights of
Venusians.

MEASURES OF VARIABILITY

Next, we need a measure of dispersion about the mean. A value an
equal distance above or below the mean should contribute the same
amount to our index of variability, even though in one case the devia-
tion from the mean is positive and in the other it is negative. Squaring a
number makes it positive, so let us describe the variability of a popula-
tion about the mean by computing the average squared deviation
from the mean. The average squared deviation from the mean is larger
when there is more variability among members of the population (com-
pare the Martians and Venusians). It is called the population variance
and is denoted by o2, the square of the lower case Greek sigma. Its pre-
cise definition for populations made up of discrete individuals is.

sum of (value associated with member
of population — -population mean)?

Population variance = :
' number of population members
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The equivalent mathematical statement is

o2 = 2‘V(X - P‘)z
N

Note that the units of variance are the square of the units of the variable
of interest. In particular, the variance of Martian heights is 25 cm? and
the variance of Venusian heights is 6.3 cm?®. These numbers summarize
the qualitative conclusion that there is more Varlablllty in heights of
Martians than in helghts of Venusians.

Since variances are often hard to visualize, it is more common to
present the square root of the variance, which we might call the square
root of the average squared deviation from the mean. Since that is quite
a mouthful, this quantity has been named the standard deviation o.
Therefore, by definition, :

Popula_tion standard deviation

= Vpopulation variance

- [sum of (value associated with member
of population — population mean)?

number of population members

or mathematically,

— 2
o=V = [ZE_BS

where the symbols are defined as before. Note that the standard devia-
tion has the same units as the original observations. For example, the
- standard deviation of Martian heights is 5 cm, and the standard devia-
tion of Venusian heights is 2.5 cm.

THE NORMAL DISTRIBUTION

Table 2—1 summarizes what we found out about Martians and Venu-
sians. The three numbers in the table tell a great deal: the population
size, the mean  height, and how much the heights vary about the mean.
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Table 2-1 Population Parameters for Heights of Martians
and Venusians

Size of Population Population standard
population mean, cm deviation, cm
Martians 200 40 5.0
Venusians 150 15 25

The distributions of heights on both planets have a similar shape, so
that roughly 68 percent of the heights fall within 1 standard deviation
from the mean and roughly 95 percent within 2 standard deviations
from the mean. This pattern occurs so often that mathematicians have
studied it and found that if the observed measurement is the sum of
many independent small random factors, the resulting measurements
will take on values that are distributed like the heights we observed on
both Mars and Venus. This distribution is called the normal (or gauss-
ian) distribution.
Its height at any given value of X is

1 1 (X - p)z
exp| — =
oV2m P 2 o
Note that the distribution is completely defined by the population mean
p and population standard deviation o. Therefore, the information
given in Table 2—1 is not just a good abstract of the data, it is all the in-

formation one needs to describe the population fully if the distribution
of values follows a normal distribution.

PERCENTILES

Armed with this theoretical breakthrough, we renew our grant by
proposing not only to measure the heights of all Jupiter’s inhabitants
but also to compute the mean and standard deviation of the heights of
all Jovians. The resulting data show the mean height to be 37.6 cm and
the standard deviation of heights to be 4.5 cm. By comparison with
Table 2—1, Jovians appear quite similar in height to Martians, since
these two parameters completely specify a normal distribution.
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The raw data, however, tell a different story. Figure 2-34 shows
that, unlike those living on the other two planets, a given Jovian is not
equally likely to have a height above average as below average; the dis-
tribution of heights of all population members is no longer symmetric
but skewed. The few individuals who are much taller than the rest in-
crease the-mean and standard deviation in a way that led us to think that
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Figure 2-3 When the population values are not distributed symmetrically about
the mean, reporting the mean and standard deviation can give the reader an
inaccurate impression of the distribution of values in the population. Panel A
shows the true distribution of the heights of the 100 Jovians (note that it is
skeswed toward taller heights). Panel B shows a normally distributed population
with 100 members and the same mean and standard deviation as in panel A.
Despite this, the distribution of heights in the two populations is quite different.
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most of the heights were higher than they actually are and that the vari-
ability of heights was greater than it actually is. Specifically, Fig. 2-3B
shows a population of 100 individuals whose heights are distributed ac-
cording to a normal or gaussian distribution with the same mean and
standard deviation as the 100 Jovians in Fig. 2-3A. It is quite different. .
So, although we can compute the mean and standard deviation of
heights of Jupiter’s— or, for that matter, any —population, these two
numbers do not summarize the distribution of heights nearly so well as
they did when the heights in the population followed a normal
distribution.

An alternative approach which better describes such data is to re-
port the median. The median is the value that half the members of the
population fall below. Figure 2-4A shows that half the Jovians are
shorter than 36 cm; 36 cm is the median. Since 50 percent of the popu-
lation values fall below the median, it is also called the 50th percentile.

Calculation of the median and other percentiles is simple. First,
list the n observations in order. The median, the value that defines
the lower half of the observations, is simply the (n + 1)/2 observa-
tion. When there are an odd number of observations, the median falls
on one of the observations. For example, if there are 27 observations,
the (27 + 1)/2 = 14th observation (listed from smallest to largest) is
the median. When there are an even number of observations, the me-
dian falls between two observations. For example, if there are 40 ob-
servations, the median would be the (40 + 1)/2 = 20.5th observa-
tion. Since there is no 20.5th observation, we take the average of
20th and 21st observation.

Other percentile points are defined analogously. For example the 25th
percentile point, the point that defines the lowest quarter of the observa-
tions, is just the (n -+ 1)/4 observation. Again, if the value falls between
two observations, take the mean of the two surrounding observations. In
general, the pth percentile point is the (z + 1)/(100/p) observation.

To give some indication of the dispersion of heights in the popula-
tion, report the value which separates the lowest (shortest) 25 percent
of the population from the rest and the value which separates the short-
est 75 percent of the population from the rest. These two points are
called the 25th and 75th percentile points, respectively. For the
Jovians, Fig. 2-4B shows that these percentiles are 34 and 40 cm.
While these three numbers (the 25, 50, and 75 percentile points, 34,
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Figure 2-4 One way to describe a skewed distribution is with percentiles. The
median is the point which divides the population in half. Panel A shows that
- 36 cm is the median height on Jupiter. Panel B shows the 25th and 75th
percentiles, the points locating the lowest and highest quarter of the heights,
respectively. The fact that the 25th percentile is closer to the median than the
75th percentile indicates that the distribution is skewed toward higher values.
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36, and 40 cm) do not precisely describe the distribution of heights,
they do indicate what the range of heights is and that there are a few
very tall Jovians but not many very short ones.

Although these percentiles are often used, one could equally well
report the Sth and 95th percentile points, or, for that matter, report the
5-,25-, 50-, 75-, and 95-percentile points.

Computing the percentile points of a population is a good way to
see how close to a n()rmal distribution it is. Recall that we said that in a
population that exhibits a normal distribution of values, about 95 per-
cent of the population members fall within 2 standard deviations of the
mean and about 68 percent fall within 1 standard deviation of the mean.
Figure 2-5 shows that, for 4 normal distribution, the values of the asso-
ciated percentile points are:

2.5th percentile mean — 2 standard deviation
16th percentile mean — 1 standard deviation
25th percentile mean — 0.67 standard deviation
50th percentile (median) mean '
75th percentile ) mean + 0.67 standard deviation
84th percentile ' mean + 1 standard deviation
97.5th percentile mean + 2 standard deviation
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Figure 2-5 Percen'_(ile points of the normal distribution.
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If the values associated with the percentiles are not too different from
what one would expect on the basis of the mean and standard deviation,
the normal distribution is a good approximation to the true population
and then the mean and standard deviation describe the population ade-
quately. - :

~ Why care whether or not the normal distribution is a good approxi-
mation? Because many of the statistical procedures used to test hy-
potheses—including the ones we will develop in Chaps. 2, 4, and 9—
require that the population follow a normal distribution at least
approximately for the tests to be reliable. (Chapters 10 and 11 present
alternative tests that do not require this assumption.)

HOW TO MAKE ESTIMATES
FROM A LIMITED SAMPLE

So far, everything we have done has been exact because we followed
the conservative course of examining every single member of the popu-
lation. Usually it is physically or fiscally impossible to do this, and we
are limited to examining a sample of n individuals drawn from the pop-
ulation in the hope that it is representative of the complete population.
Without knowledge of the entire population, we can no longer know the
population mean p and population standard deviation o. Nevertheless,
we can estimate them from the sample. The estimate of the population
mean is called the sample mean and is defined analogously to the popu-
lation mean: \

sum of values, e.g., heights, of
each observation in sample

Sample mean = —
v number of observations in sample

The equivalent mathematical statement is

32X
n
in which the bar over the X denotes that it is the mean of the n observa-
tions of X.
The estimate of the population standard deviation is called the
sample standard deviation s and is defined by
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sum of (value of observation in
the sample — sample mean)?

Sample standard deviation = -
number of observations

in sample — 1
or, mathematically,*

(X — X)?

n—1

(The standard deviation is also often denoted SD.) This definition dif-
fers from the definition of the population standard deviation ¢ in two
ways: (1) the population mean p has been replaced by our estimate of
it, the sample mean X, and (2) we compute the “average” squared devi-
ation of a sample by dividing by » — 1 rather than n. The precise reason
for this requires substantial mathematical arguments, but we can pre-
sent the following intuitive justification. The sample will never show as
much variability as the entire population and dividing by n — 1 instead
of n compensates for the resultant tendency to underestimate the popu-
lation standard deviation.

In conclusion, when there is no evidence that the sample was not
drawn from a normal distribution, summarize data with the sample mean
and sample standard deviation, the best estimates of the population
mean and population standard deviation, because these two parameters
completely define the normal distribution. When there is evidence that
the population under study does not follow a normal distribution, sum-
marize data with the median and upper and lower percentiles.

HOW GOOD ARE THESE ESTIMATES?

The mean and standard deviation computed from a random sample are
estimates of the mean and standard deviation of the entire population
from which the sample was drawn. There is nothing special about the

*All equations, in the text will be presented in the form most conducive to under-
standing statistical- concepts Often there is another, mathematically equivalent, form of
the equation which is more suitable for computation. These forms are tabulated in
Appendix A.
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specific random sample used to compute. these statistics, and different
random samples will yield slightly different estimates of the true popu-
lation mean and standard deviation. To quantitate how accurate these es-
timates are likely to be, we can compute their standard errors. It is pos-
sible to compute a standard error for any statistic, but here we shall
focus on the standard error of the mean. This statistic quantifies the cer-
tainty with which the mean computed from a random sample estimates
the true mean of the population from which the sample was drawn.
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Figure 2-6 If one draws three different samples of 10 members each from a
single population, one will obtain three different estimates of the population
mean and standard deviation.
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What is the standard error of the mean? »

Figure 2-6A shows the same population of Martian heights we con-
sidered before. Since we have complete knowledge of every Martian’s
height, we will use this example to explore how accurately statistics
computed from a random sample describe the entire population. Sup-
pose that we draw a random sample of 10 Martians from the entire pop-
ulation of 200, then compute the sample mean and sample standard de-
viation. The 10 Martians in the sample are indicated by solid circles in
Fig. 2-6A. Figure 2-6B shows the results of this random sample as it
might be reported in a journal article, together with the sample mean
(X=41.5 cm) and sample standard deviation (s = 3.8 cm). The values
are close, but not equal, to the population mean (v = 40 cm) and stan-
dard deviation (o = 5 cm). ‘

There is nothing special about this sample—after all, it was
drawn at random—so let us consider a second random sample of 10
Martians from the same population of 200. Figure 2-6C shows the
results of this sample, with the specific Martians identified in Fig. 2-
6A as hatched circles. While the mean and standard deviation, 36 and
5 cm, of this second random sample are also similar to the mean and
standard deviation of the whole population, they are not the same.
Likewise, they are also similar, but not identical, to those from the
first sample.

Figure 2-6D shows a third random sample of 10 Martians, identi-
fied in Fig. 2-6A with circles containing dots. This sample leads to esti-
mates of 40 and 5 cm for the mean and standard deviation.

Now, we make an important change in emphasis. Instead of con-
centrating on the population of all 200 Martians, let us examine the
means of all possible random samples of 10 Martians. We have al-
ready found three possible values for this mean, 41.5, 36, and 40 cm,
and there are many more possibilities. Figure 2-7 shows these three
means, plotted as circles, just as we plotted the individual heights, us-
ing the same symbols as Fig. 2-6. To better understand the amount of
variability in the means of samples of 10 Martians, let us draw an-
other 22 random samples of 10 Martians each and compute the mean
of each sample. These additional means are plotted in Fig. 2-7 as
open circles. v

Now that we have drawn 25 random samples of 10 Martians each,
have we exhausted the entire population of 200 Martians? No. There



24 CHAPTER 2

prme—i
(o]
e
00
00
(oo}
00
(e Ne]
000 (o]
OCO0O0OO0es® o0
r U T T 1
30 35 40 45 50

Figure 2-7 If one draws more and more samples—each with 10 members—
from a single population, one obtains the population of all possible sample
means. This figure illustrates the means of 25 samples of 10 Martians each
drawn from the poputfation of 200 Martians shown in Figs. 2—-1 and 2—-6A. The
means of the three specific samples shown in Fig. 2-6 are shown using circles
filled with corresponding patterns. This new population of all possible sample
means will be normally distributed regardless of the nature of the original
population; its mean will equal the mean of the original population; its standard
deviation is called the standard error of the mean.

are more than 10'6 different ways to select 10 Martians at random from
the population of 200 Martians.

Look at Fig. 2-7. The collection of the means of 25 random sam-
ples, each of 10 Martians, has a roughly bell-shaped distribution, which
is similar to the normal distribution. When the variable of interest is the
sum of many other variables, its distribution will tend to be normal, re-
gardless of the distributions of the variables used to form the sum.
Since the sample mean is just such a sum, its distribution will tend to be
normal, with the approximation improving as the sample size increases.
(If the sample were drawn from a normally distributed population, the
distribution of the sample means would have a normal distribution re-
gardless of the sample size.) Therefore, it makes sense to describe the
data in Fig. 2-7 by computing their mean and standard deviation. Since
the mean value of the 25 points in Fig. 2-7 is the mean of the means of
25 samples, we will denote it X5. The standard deviation is the standard
deviation of the means of 25 independent random samples of 10
Martians each, and so we will denote it s3. Using the formulas for mean
and standard deviation presented earlier, we compute Xz = 40 cm
and sz = 1.6 cm. ,

The mean of the sample means X5 is (within measurement and
rounding error) equal to the mean height p. of the entire population of



HOW TO SUMMARIZE DATA 25

200 Martians from which we drew the random samples. This is quite a
remarkable result, since X5 is not the mean of a sample drawn directly
from the original population of 200 Martians; X5 is the mean of 25 ran-
dom samples of size 10 drawn from the populatton consisting of all
10" possible values of the mean of random samples of size 10 drawn
from the original population of 200 Martians.

Is sx equal to the standard deviation o of the population of 200
Martians? No. In fact, it is quite a bit smaller; the standard deviation of
the colléction of sample means sx is 1.6 cm while the standard devia-
tion for the whole populations is 5 cm. Just as the standard deviation of
the original sample of 10 Martians s is an estimate of the variability of
Martians’ heights, sx is an estimate of the variability of possible values
of means of samples of 10 Martians. Since when one computes the
mean, extreme values tend to balance each other, thére will be less vari-
ability in the values of the sample means than in the original popula-
tion. syis a measure of the precision with which a sample mean X esti-
mates the population mean . We might name sx “standard deviation
of means of random samples of size 10 drawn from the original popu-
lation.” To be brief, statisticians have coined a shorter name, the stan-
dard error of the mean (SEM).

Since the precision with which we can estimate the mean increases
as the sample size increases, the standard error of the mean decreases
as the sample size increases. Conversely, the more variability in the
original population, the most variability will appear in possible mean
values of samples; therefore, the standard error of the mean increases
as the population standard deviation increases. The true standard error
of the mean of samples of size n drawn from a population with stan-
dard deviation o is* ‘

O =

SE

The best estimate of o3 from a single sample is

It

S

*This equation is derived in Chapter. 4.
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Since the possible values of the sample mean tend to follow a nor-
mal distribution, the true (and unobserved) mean of the original popula-
tion will lie within 2 standard errors of the sample mean about 95 per-
cent of the time.

As already noted, mathematicians have shown that the distribution
of mean values will always approximately follow a normal distribution
regardless of how the population from which the original samples were
drawn is distributed. We have developed what statisticians call the
central-limit theorem. 1t says:

® The distribution of sample means will be approximately normal
regardless of the distribution of values in the original popula-
tion from which the samples were drawn.

® The mean value of the collection of all possible sample means
will equal the mean of the original population. ,

® The standard deviation of the collection of all possible means
of samples of a given size, called the standard error of the
mean, depends on both the standard deviation of the original
population and the size of the sample.

Figure 2-8 illustrates the relationship between the sample mean, the
sample standard deviation, and the standard error of the mean and how
they vary with sample size as we measure more and more Martians.* As
we add more Martians to our sample, the sample mean X and standard
deviation s estimate the population mean . and standard deviation o
with increasing precision. This increase in the precision with which the
sample mean estimates the population mean is reflected by the smaller
standard error of the mean with larger sample sizes. Therefore, the stan-
dard error of the mean tells not about variability in the original popula-
tion, as the standard deviation does, but about the certainty with which a
sample mean estimates the true population mean.

The standard deviation and standard error of the mean measure
two very different things and are often confused. Most medical investi-
gators summarize their data with the standard error of the mean

*Figure 2-8 was obtained by selecting two Martians from Fig. 2-1 at random, then
computing X, s, and s. Then one more Martian was selected and the computations done
again. Then, a fourth, a fifth, and so on, always adding to the sample already drawn. Had
we selected different random samples or the same samples in a dlfferent order, Fig. 2-8
would have been different.
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Figure 2-8 As the size of a random sample of Martians drawn from the
population depicted in Fig. 2-1 grows, the precision with which the sample mean
and sample standard deviation, X and s, estimate the true population mean and
standard deviation, w and o, increases. This increasing precision appears in two
ways: (1) the difference between the statistics computed from the sample (the
points) moves closer to the true population values (the lines), and (2) the size of
the standard error of the mean decreases.

because it is always smaller than the standard deviation. It makes their
data look better. However, unlike the standard deviation, which quanti-
fies the variability in the population, the standard error of the mean
quantifies uncertainty in the estimate of the mean. Since readers are
generally interested in knowing about the population, data should never
be summarized with the standard error of the mean.
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To understand the difference between the standard deviation and
standard error of the mean and why one ought to summarize data using
the standard deviation, suppose that in a sample of 20 patients an inves-
tigator reports that the mean cardiac output was 5.0 L/min with a stan-
dard deviation of 1 L/min. Since about 95 percent of all population
members fall within about 2 standard deviations of the mean, this re-
port would tell you that, assuming that the population of interest fol-
lowed a normal distribution, it would be unusual to observe a cardiac
output below about 3 or above about 7 L/min. Thus, you have a quick
summary of the population described in the paper and a range against
which to compare specific patients you examine. Unfortunately, it is
unlikely that these numbers would be reported, the investigator being
more likely to say that the cardiac output was 5.0 £ 0.22 (SEM) L/min.
If you confuse the standard error of the mean with the standard devia-
tion, you would believe that the range of most of the population was
narrow indeed—4.56 to 5.44 L/min. These values describe the range
which, with about 95 percent confidence, contains the mean cardiac
output of the entire population from which the sample of 20 patients
was drawn. (Chapter 7 discusses these ideas in detail.) In practice, one
generally wants to compare a specific patient’s cardiac output not only
with the population mean but with the spread in.the population taken as
a whole.

SUMMARY

When a population follows a normal distribution, we can describe its
location and variability completely with two parameters, the mean and
standard deviation. When the population does not follow a normal dis-
tribution at least roughly, it is more informative to describe it with the
median and other percentiles. Since one can rarely observe all members
of a population, we will estimate these parameters from a sample drawn
at random from the population. The standard error quantifies the preci-
sion of these estimates. For example, the standard error of the mean
quantifies the precision with which the sample mean estimates the pop-
ulation mean.

In addition to being useful for describing a population or sample,
these numbers can be used to estimate how compatible measurements
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are with clinical or scientific assertions that an intervention affected
some variable. We now turn our attention to this problem.

PROBLEMS

2-1

2-2

2-3

Viral load of HIV-1 is a known risk factor for heterosexual transmission -
of HIV; people with higher viral loads of HIV-1 are significantly more
likely to transmit the virus to their uninfected partners. Thomas Quinn
and associates (‘“Viral Load and Heterosexual Transmission of Human
Immunodeficiency Virus Type 1.” N. Engl. J. Med., 342: 921-929, 2000)
studied this question by measuring the amount of HIV-1 RNA detected in
blood serum. The following data represent HIV-1 RNA levels in the

_group whose partners seroconverted, which means that an initially unin-

fected partner became HIV positive during the course of the study;
79725, 12862, 18022, 76712, 256440, 14013, 46083, 6808, 85781, 1251,
6081, 50397, 11020, 13633, 1064, 496433, 25308, 6616, 11210, 13900
RNA copies/mL. Find the mean, median, standard deviation, and 25th
and 75th percentiles of these concentrations. Do these data seem to be
drawn from a normally distributed population? Why or why not?

‘When data are not normally distributed, researchers can sometimes trans-
Jorm their data to obtain values that more closely approximate a normal
distribution. One approach to this is to take the logarithm of the observa-
tions. The following numbers represent the same data described in Prob.
2-1 following log (base 10) transformation: 4.90, 4.11, 4.26, 4.88, 5.41,
4.15, 4.66, 3.83, 4.93, 3.10, 3.78, 4.70, 4.04, 4.13, 3.03, 5.70, 4.40, 3.82,
4.05, 4.14. Find the mean, median, standard deviation, and 25th and 75th
percentiles of these concentrations. Do these data seem to be drawn from
a normally distributed ‘population? Why or why not? '
Polychlorinated biphenyls (PCBs) are a class of environmental chemi-
cals associated with a variety of adverse health effects, including intel-
lectual impairment in children exposed in utero while their mothers
were pregnant. PCBs are also one of the most abundant contaminants
found in human fat. Tu Binh Minh and colleagues analyzed PCB con-
centrations in the fat of a group of Japanese adults (“Occurrence of Tris
(4-chlorophenyl)methane, Tris (4-chlorophenyl)methanol, and “Some
Other Persistent Organochlorines in Japanese Human Adipose Tissue,”
Environ. Health Perspect., 108:599—-603, 2000). They detected 1800,
1800, 2600, 1300, 520, 3200, 1700, 2500, 560, 930, 2300, 2300, 1700,

. 720 ng/g lipid weight of PCBs in the people they studied. Find the

mean, median standard deviation, and 25th and 75th percentiles of these
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CHAPTER 2

concentrations. Do these data seem to be drawn from a normally dis-
tributed population? Why or why not?

Sketch the distribution of all possible values of the number on the
upright face of a die. What is the mean of this population of possible
values?

Roll a pair of dice and note the numbers on each of the upright faces.
These two numbers can be considered a sample of size 2 drawn from the
population described in Prob. 2-4. This sample can be averaged. What
does this average estimate? Repeat this procedure 20 times and plot the
averages observed after each roll. What is this distribution? Compute its
mean and standard deviation. What do they represent?

Robert Fletcher and Suzanne Fletcher (“Clinical Research in General
Medical Journals: A 30-Year Perspective,” N. Engl. J. Med., 301:180-183,
1979, used by permission) studied the characteristics of 612 randomly se-
lected articles published in the Journal of the American Medical Associa-
tion, New England Journal of Medicine, and Lancet since 1946. One of the
attributes they examined was the number of authors; they found:

Year No. of articles examined Mean no. of authors SD
1946 - 161 2.0 1.4
1956 149 . 2.3 1.6
1966 157 .28 1.2
1976 155 ) 4.9 7.3

Sketch the populations of numbers of authors for each of these years.
How closely do you expect the normal distribution to approximate the ac-
tual population of all authors in each of these years? Why? Estimate the
certainty with which these samples permit you to estimate the true mean
number of authors for all articles published in comparable journals
each year.



"Chapter 3

How to Test for Differences
between Groups

Statistical methods are used to summarize data and test hypotheses with
those data. Chapter 2 discussed how to use the mean, standard deviation,
median, and percentiles to summarize data and how to use the standard
“error of the mean to estimate the precision with which a sample mean
estimates the population mean. Now we turn our attention to how to use
data to test scientific hypotheses. The statistical techniques used to per-
form such tests are called tests of significance; they yield the highly
prized P value. We now develop procedures to test the hypothesis that,
on the average, different treatments all affect some variable identically.
Specifically, we will develop a procedure to test the hypothesis that diet
has no effect on the mean cardiac output of people living in a small
town. Statisticians call this hypothesis of no effect the null hypothesis.

The resulting test can be generalized to analyze data obtained in
experiments involving any number of treatments. In addition, it is the
archetype for a whole class of related procedures known as analysis of
variance.

THE GENERAL APPROACH

To begin our experiment, we randomly select four groups of seven peo-
ple each from a small town with 200 healthy adult inhabitants. All

31
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participants give informed consent. People in the control group con-
tinue eating normally; people in the second group eat only spaghetti;
people in the third group eat only steak; and people in the fourth group
eat only fruit and nuts. After 1 month, each person has a cardiac
catheter inserted and his or her cardiac output is measured.

As with most tests of significance, we begin with the hypothesis
that all treatments (diets) have the same effect (on cardiac output).
Since the study includes a control group (as experiments generally
should), this hypothesis is equivalent to the hypothesis that diet has no
effect on cardiac output. Figure 3-1 shows the distribution of cardiac
outputs for the entire population, with each individual’s cardiac output
represented by a circle. The specific individuals who were randomly se-
lected for each diet are indicated by shaded circles, with different shad-
ing for different diets. Figure 3-1 shows that the hypothesis is, in fact,
true. Unfortunately, as investigators we cannot observe the entire popu-
lation and are left with the problem of deciding whether or not it is true
from the limited data shown in Fig. 3-2. There are obviously differ-
ences between the samples; the question is: Are these differences due to
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Figure 3-1 The values of cardiac output associated with all 200 members of
the population of a small town. Since diet does not affect cardiac output, the four
groups of seven people each selected at random to participate in our experiment
(control, spaghetti, steak, fruit and nuts) simply represent four random samples
drawn from a single population.
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Figure 3-2  An investigator cannot observe the entire population but only the four
samples selected at random for treatment. This figure shows the same four
groups of individuals as in Fig. 3-1 with their means and standard deviations as
they would appear to the investigator. The question facing the investigator is: Are
the observed differences due to the different diets or simply random variation?
The figure also shows the collection of sample means together with their standard
deviation, which is an estimate of the standard error of the mean.

the fact that the different groups of people ate differently or are these
differences simply a reflection of the random variation in cardiac output
between individuals?

To use the data in Fig. 3-2 to address this question, we proceed un-
der the assumption that the hypothesis that diet has no effect on cardiac
output is correct. Since we assume that it does not matter which diet
any particular individual ate, we assume that the four experimental
groups of seven people each are four random samples of size 7 drawn
from a single population of 200 individuals. Since the samples are
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drawn at random from a population with some variance, we expect the
samples to have different means and standard deviations, but if our hy-
pothesis that the diet has no effect on cardiac output is true, the ob-
served differences are simply due to random sampling.

Forget about statistics for a moment. What is it about different sam-
ples that leads you to believe that they are representative samples drawn
from different populations? Figures 3-2, 3-3, and 3-4 show three different
possible sets of samples of some variable of interest. Simply looking at
these pictures makes most people think that the four samples in Fig. 3-2
were all drawn from a single population, while the samples in Figs. 3-3
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Figure 3-3 The four samples shown are identical to those in Fig. 3-2 except
that the variability in the mean values has been increased substantially. The sam-
ples now appear to differ from each other because the variability between the
sample means is larger than one would expect from the variability within each
sample. Compare the relative variability in mean values with the variability within
the sample groups with that seen in Fig. 3-2.
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and 3-4 were not. Why” The vanablhty within each sample quantified
with the standard deviation, is approximately the same. In Fig. 3-2, the
variability in the mean values of the samples is consistent with the vari-
ability one observes' within the individual samples. In contrast, in
Figs. 3-3 and 3-4, the variability among sample means is much larger
than one would expect from the variability: within each sample. Notice
that we reach this conclusion whether all (Fig. 3-3) or only one (Fig. 3-4)
of the sample means appear to differ from the others.

Now let us formalize this analysis of vanab111ty to analyze our diet
experiment. The standard deviation or its square, the variance, is a good
measure of variability. We will use the variance to construct a proce-
dure to test the hypothesis that diet does not affect cardiac output.
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Figure 3-4 When the mean of even one of the samples (sample 2) differs
substanually from the other samples, the variability computed from within the
means is substantially larger than one would expect from examining the variabil-
ity within the groups.
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Chapter 2 showed that two population parameters—the mean and
standard deviation (or, equivalently, the variance)—completely describe a
normally distributed population. Therefore, we will use our raw data to
compute these parameters and then base our analysis on their values rather
than on the raw data directly. Since the procedures we will now develop
are based on these parameters, they are called parametric statistical meth-
ods. Because these methods assume that the population from which the
samples were drawn can be completely described by these parameters,
they are valid only when the real population approximately follows the
normal distribution. Other procedures, called nonparametric statistical
methods, are based on frequencies, ranks, or percentiles and do not require
this assumption.* Parametric methods generally provide more information
about the treatment being studied and are more likely to detect a real treat-
ment effect when the underlying population is normally distributed.

We will estimate the parameter population variance in two different
ways: (1) The standard deviation or variance computed from each sam-
ple is an estimate of the standard deviation or variance of the entire pop-

_ulation. Since each of these estimates of the population variance is com-
puted from within each sample group, the estimates will not be affected
by any differences in the mean values of different groups. (2) We will
use the values of the means of each sample to determine a second esti-
mate of the population variance. In this case, the differences between the
means will obviously affect the resulting estimate of the population vari-
ance. If all the samples were, in fact, drawn from the same population
(i.e., the diet had no effect), these two different ways to estimate the
population variance should yield approximately the same number. When
they do, we will conclude that the samples were likely to have been
drawn from a single population; otherwise, we will reject this hypothesis
and conclude that at least one of the samples was drawn from a different
population. In our experiment, rejecting the original hypothesis would
lead to the conclusion that diet does alter cardiac output.

TWO DIFFERENT ESTIMATES
OF THE POPULATION VARIANCE

How shall we estimate the population variance from the four sample
variances? When the hypothesis that the diet does not affect cardiac output

*We will study these procedures in Chaps. 5, 8, 10, and 11.
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is true, the variances of each sample of seven people, regardless of what -
they ate, are equally good estimates of the population variance, so we sim-
ply average our four estimates of variance within the treatment groups

Average variance in cardiac output within treatment groups = Y4
“(variance in cardiac output of controls + variance in cardiac output
of spaghetti eaters + variance in cardiac output of steak eaters +
variance in cardiac output of fruit and nut eaters)

The mathematical equivalent is

s2. = Va(s?

con spa + S + stz')

where s” represents variance. The variance of each sample is computed
with respect to the mean of that sample. Therefore, the population var1-
ance estimated from within the groups, the within- -groups variance s>
will be the same whether or not diet altered cardiac output.

Next we estimate the population variance from the means of the
samples. Since we have hypothesized that all four samples were
drawn from a single population, the standard deviation of the four
sample means will approximate the standard error of the mean. Re-
call that the standard error of the mean oy is related to the sample
size n (in this case 7) and the population standard deviation o ac-
cording to

wit?”

oy =

5s

Therefore, the true population variance o? is related to the sample size
and standard error of the mean according to

o’ = no

Belto

We use this relationship to estimate the population variance from the
variability between the sample means using

L2 2
Sbet — NS%

where 57, is the estimate of the population variance computed from
between the sample means and sy is the standard deviation of the
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means of the four sample groups, the standard error of the mean. This
estimate of the population variance computed from between the group
means is often called the between-groups variance.

If the hypothesis that all four samples were drawn from the same
population is true (i.e., that diet does not. affect cardiac output); the
within-groups variance and between-groups variance are both estimates
of the same population variance and so should be about equal. Therefore,
we will compute the following ratio, called the F-test statistic,

__population variance estimated from sample means

population variance estimated as average
of sample variances

2

S
F — lzjet
' S

wit

Since both the numerator and the denominator are estimates of the
same population variance o, F should be about 0%/a2 = 1. For the four
random samples in Fig. 3-2, F is about equal to 1, we conclude that the
data in Fig. 3-2 are not inconsistent with the hypothesis that diet does
not affect cardiac output and we continue to accept that hypothesis. -

Now we have a rule for deciding when to reject the hypothesis that
all the samples were drawn from the same population:

If F is a big number, the variability between the sample means is
larger than expected from the variability within the samples, so
reject the hypothesis that all the samples were drawn from the
same population.

This quantitative statement formalizes the qualitative logic we used
when discussing Figs. 3-2 to 3-4. The F associated with Fig. 3-3 is
68.0, and that associated with Fig. 3-4 is 24.5.

WHAT IS A “BIG" F?

The exact value of F one computes depends on which individuals were
drawn for the random samples. For example, Fig. 3-5 shows yet another
set of four samples of seven people drawn from the population- 0f 200
people in Fig. 3-1. In this example F = 0.5. Suppose we repeated our
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Figure 3-5 Four samples of seven members each drawn from the population
shown in Fig. 3-1. Note that the variability in sample means is consistent with
the variability within each of the samples, F=0.5.

experiment 200 times on the same population. Each time we would draw
four different samples of people and—even if the diet had no effect on
cardiac output— get slightly different values for F due to random varia-
tion. Figure 3-6A shows the result of this procedure, with the resulting
F’s rounded to one decimal place and represented with a circle; the two
dark circles represent the values of F computed from the data in Figs. 3-2
and 3-5. The exact shapes of the distribution of values of F depend on
how many samples were drawn, the size of each sample, and the distribu-
tion of the population from which the samples were drawn.

As expected, most of the computed F’s are around 1 (that is, be-
tween 0 and 2), but a few are much larger. Thus, even though most
experiments will produce relatively small values of F, it is possible that,



40 CHAPTER 3

A
o

000

0000

00000

00000000

00000000

00000000000

00000000000
- 000000000000

00000000000000

CO000000000000000

000000000000000000
000000000000 0000000000
00000Q0000000000000000000000
O00000@00000000®00000000000000000000 O O 00 O
T T T T T T T T T 1
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Value of F
B -
o]

000

0000

00000 .

00000000

00000000

00000000000

00000000000

000000000000

0000000000000 0

Q0000000000000 00

000000000000 000000
0000000000000 0000O00000 -
000000000000000000000Q00000
0000000000000 00000000000000000Ce0EGS © o o0 o
F T T T T T T T T 1
0 05 1.0 1.5 2.0 .25 3.0 35 4.0 45

Value of F

Figure 3-6 (A) Values of F computed from 200 experiments involving four sam-
ples, each of size 7, drawn from the population in Fig. 3-1. (B) We expect F to ex-
ceed 3.0 only 5 percent of the time when all samples were, in fact, drawn from a
single population. (C) Results of computing the F ratio for all possible samples
drawn from the original population. The 5 percent of most extreme F values are
shown darker than the rest. (D) The F distribution one would obtain when sampling
an infinite population. In this case, the cutoff value for considering F to be “big” is
that value of F that subtends the upper 5 percent of the total area under the curve.

by sheer bad luck, one could select random samples that are not good
representatives of the whole population. The result is an occasional rela-
tively large value for F even though the treatment had no effect. Figure
3-6B shows, however, that such values are unlikely. Only 5 percent of
the 200 experiments (10 experiments) produced F values equal to or
greater than 3.0. We now have a tentative estimate of what to call a “big”
value for F. Since F exceeded 3.0 only 10 out of 200 times when all the
samples were drawn from the same population, we might decide that F
is big when it exceeds 3.0 and reject the hypothesis that all the samples
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Figure 3-6 (continued)

were drawn from the same population (i.e., that the treatment had no ef-
fect). In deciding to reject the hypothesis of no effect when F is big, we
accept the risk of erroneously rejecting this hypothesis 5 percent of the
time because F will be 3.0 or greater about 5 percent of the time, even
when the treatment does not alter mean response.

When we obtain such a “big” F, we reject the original hypothesis
that all the means are the same and report P < 0.05. P < 0.05 means
that there is less than a 5 percent chance of getting a value of F as big
or bigger than the computed-value if the original hypothesis were true
(i.e., diet did not affect cardiac output).
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The critical value of F should be selected not on the basis of just
200 experiments but all 10*? possible experiments. Suppose we did all
10 experiments and computed the corresponding F values, then
plotted the results, just as we did for Fig. 3-6B. Figure 3-6C shows the
results with grains of sand to represent each observed F value. The
darker sand indicates the biggest 5 percent of the F values. Notice how
similar it is to Fig. 3-6B. This similarity should not surprise you, since
the results in panel B are just a random sample of the population in
panel C. Finally, recall that everything so far has been based on an
original population containing only 200 members. In reality, popula-
tions are usually much larger, so that there can be many more than 10*2
possible values of F. Often, there are essentially an infinite number of
possible experiments. In terms of Fig. 3-6C, it is as if all the grains of
sand melted together to yield the continuous line in Fig. 3-6D.

‘Therefore, areas under the curve are analogous to the fractions of
total number of circles or grains of sand in panels B and C. Since the
shaded region in Fig. 3-6D represents 5 percent of the total area under
the curve, it can be used to compute that the cutoff point for a “big” F
with the number of samples and sample size in this study is 3.01. This
and other cutoff values' that correspond to P <<0.05 and P <0.01 are
listed in Table 3-1. :

To construct these tables, mathematlclans have assumed four
things about the underlying population that must be at least approx1-
mately satisfied for the tables to be applicable to real data:

Each sample must be independent of the other samples.
Each sample must be randomly selected from the population
being studied.

® The populations from which the samples were drawn must be
normally distributed.*

® The variances of each population must be equal, even when the
medns are different, i.e., when the treatment has an effect.

When the data suggest that these assumptions do not apply, one ought
not to use the procedure we just developed, the analysis of variance.
Since there is one factor (the diet) that distinguishes the different exper-

*This is another reason parametric statistical methods require data from normally
distributed populations.




Table 3-1 Critical Values of F Corresponding to P < .05 (Lightface) and P < .01 (Boidface)

Yn

vg 1 2 3 4 5 6 7 8 9 10 n 12 14 16 20 24 . 30 40 50 75 100 200 500 £

1 161 200 216 225 -230 234 237 239 241 . 242 243 244 245 246 248" 243 250 251 252 253 253 254 254 254
4052 4999 5403 5625 5764 5859 5928 5981 6022 6056 6082 6106 ' 6142 6169 6208 6234 6261 6286 6302 6323 6334 - 6352 6361 6366

2 1851 19.00 19.16 1925 1930 1933 19.36 1937 19.38 1939 1940 19.41 19.42 19.43 19.44° 1945 1946 1947 19.47.19.48 1949 1949 1950 1950
98.49 99.00 " 99.17 99.25 99.30 99.33 -99.36 99.37 99.39 9940 99.41 9942 99.43- 99.44 99.45 99.46 99.47 . 99.48 - 99.48 99.43 99.49 99.49° 99.50 99.50

3 1013 955 928 912 901 894 888 884 881 878 876 874 871 863 866 864 862 860 8658 857 856 854 854 853
3412 3082 2946 2871 2824 27.91 27.67 27.49 27.34 27.23 27.13 27.05 2692 26.83 26.69 26.60 26,50 2641 26.35 26.27 26.23 26.18 26.14 26.12

4 771 694 659 639 626 616 609 604 600 596 693 591 58 6584 580 6577 574 571 570 568 566 6565 564 563
21.20 18.00 16.69 15.98 1552 1521 1498 14.80 14.66 1454 1445 1437 1424 1415 1402 13.93 13.83 1374 13.69 1361 1357 1352 1348 1346

5 661 573 541 519 505 495 488 482 . 478 474 470 468 464 460 456 453 450 446 444 442 440 438 437 436
16.26 13.27 12.06 11.33 1097 10.67 1045 10.29 10.16 10.05 9.96 9.89 977 968 955 947 9.38 "929 924 917 913 907 9.04 902

"6 599 514 476 453 439 428 421 4315 410 406 403 400 396 - 392 387 384 381 377 375 372 371 369 368 367
1374 1092 978 915 875 847 826 810 798 ‘787 779 772 760 .752 739 7.31 "723 734, 703 702 699 694 690 688

7 559 474 435 412 ‘397 387 379 373 368 363 360 357 352 349 344 341 338 .334 332 329. 328 325 324 323
1225 955 845 785 746 7.9 700 684 671 662 654 647 635 627 6.15 607 598- 590 6585 578 575 570 667 565

8 632 446 407 384 369 358 350 344 339 334 331 328 323 320 315 312 308 305 303 300 . 298 296 294 -293
1126 865 759 7.01 663 637 619 603 591 58 674 567 556 6548 536 528 520 . 6.11- 506 500 496 491 488 .4.86

9 512 426 38 363 348 337 329 323 318 313 310 307 302 298 293 290 286 282 280 277 276 273 272 27
1056 802 693 642 6.06 580 562 547 535 526 518 511 500 492 480 473 464 456 ©451 445 441 436 433 431

10 486 410 371 348 333 322 314 307 302 297 294 291 286 282 277 274 270 267 264 261 2859 256 255 254
1004 756 655 599 664 539 521 506 495 485 478 471 460 452 441 433 425 4.7 412 405 401 396 393 391

19 484 398 359 336 320 309 301 295 290 -286 282 279 274 270 265 261 257 253 250 247 245 242 241 240
8965 720 6.22 567 532 507 488 474 463 454 446 440 429 421 410 402 394 386 380 374 370 366 362 3.60

12 475 388- 349 326 311 300 292 285 280 276 272 269 264 260 254 250 246 242 240 236 235 232 231 230
933 693 585 541 606 482 465 450 439 430 422 416 405 398 386 378 370 361 356 349 346 341 -338 336

13 467 380 341 318 302 292 284 277 272 267 263 260 255 251 246 242 238 234 232 228 226 224 222 221
8.07 670 574 520 486. 462 444 430 419 410 402 396 385 378 367 359 351 342 337 330 327 321 318 316

14 460 374 334 311 296 285 277 270 265 260 256 253 248 244 239 235 231 227 224 221 219 216 214 213
886 651 556 503 469 446 428 414 403 394 386 380 370 362 351 343 334 326 321 314 311 306 302 3.00

16 454 368 329 306 290 279 270 264 259 255 251 248 243 239 233 229 225 "221 218 215 212 210 208 207
868 636 542 483 456 432 414 400 389 380 373 367 356 348 336 329 320 312 307 300 297 292 289 287
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449
8.53

445
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8.28

4.38
8.18

4.35
8.10

432
8.02

430
7.94

428
7.88

426
7.82

424
777

422
772

a

7.68

420
7.64

418
7.60

417
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4.15
7.50

4.13
7.44

3.63
6.23

359
6.11

3.55
6.01

3.62
6.93
3.49
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347
6.78

344
5.72
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5.66
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6.53
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5.49
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6.45
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3.30
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4.87

3.05
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468
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274
4.20

270
4.10
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3.94
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257
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n
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3.67

249
3.63

247
3.59
246
3.56

244
3.53

243
3.50

242
3.47
240
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2.38
338

266
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258
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255
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249
3.6
247
3.59
245
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243
3.50
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237
3.39

236
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333
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2.30
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3.89

255
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251
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248
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245
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351
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236
3.36
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351

238
343
235
337

232
3.31
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3.26
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3.00
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3.52

2.37
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3.30
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3.24
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224
3.14
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3.09
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3.05
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214
2.92
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2.90
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2.86
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2.82
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3.55

238
345
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3.37
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228
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225
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3.03
216
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213
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2.90
2.10
287
2.09
284
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2.80

2,08
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2.37
345

2.33
3.35

229
3.27

2.26
319

223
3.13

220
3.07

218
3.02

234
297

213
293

AR

289

2.0
2.86

2.08
2.83

2.06
2.80

205

277

204
274
202
270

2,00
2.66

233
337

229
327

225

3.19

22
312

2.8
3.05

215
2.99

213
294

210
2.89

2.09
2.85

2.06

281

2.05
2.77

203
274

202

27n

2.00
268

1.99
2.66

197
262

1.85
258

228
3.25

223
3.16
219
3.07

215
3.00

212
294

209
2.88

207
283

204
2.78
2,02
274
2,00
270
199
2.66

197
263

196
2,60

194
257

193
255

191
251

1.89
247

224
3.18

-2.19

3.08

215
3.00

2n
292

208
286

205
2.80
203
275
2.00
270
198
266
1.96
262
1.95
2.58

1.93
2.55

191
252

1.90
2.49

1.89
2.47

1.86
242

1.84
238

220
3.10

215
3.00

2N
2.91

207

2.84

204
2.7

2.00
272

198
2.67

1.96
2.62

1.94
2.58

192
2.54

1.90
2.50

1.88
247

187
244

185
2.41

1.84
2.38

1.82
234

1.80
2.30

2.16
3.01

2.1
2,92

207
283

202
276

1.99
269

1.96
263

193
258

191
253

1.89
243

187
245

185

24v

1.84
238

1.81
235

1.80
2.32
179
229
176
225

1.74
221

213
296

208
2.86

204
278

2.00
270

196
263

193
258

1.91
253

1.88
248

1.86
244

1.84
240

1.82
236

1.80

2.33°

1.78
230

177
227
1.76
224
174
220

wn
2,15

209
2.98

204
279

2.00
271

1.96
263

1.92
256

1.89
2,51

1.87
246

1.84
241

1.82

236

1.80
232
1.78
228
1.76
225

1.75
222

173
219

1727

2.16

1.69
212

167
2.08

207
2.86

202
2.76

198
2,68

1.94
2.60

1.80
253

1.87
2.47

1.84
242

1.82
237

1.80
233
177
2.29
176
2.25
174
2.21

172
218

N
215
1.69
213
1.67
208

1.64
2.04

204
2.80

1.99
2.70
195
2.62
1.9
254
1.87
247
1.84
242
1.81
237
1.79
232
1.76
227
1.74
2.23
1.72
2.19

wmn
2.16

1.69
213

1.68
2.10
1.66
2.07
1.64
2.02

1.61
1.98

2.02
2.77

197
2.67

193
2.59

190
251

1.85
244

1.82
2.38

1.80
233
177
2.28
174
2.23

1.72
219

1.70
2.15

1.68
212

1.67
2.09
1.65
2.06
1.64
2.03

161
1.98

1.59
1.94

20
275

196
2.65

192
2.57

188
249

1.84
242

1.81
236

178
231
1.76
226
173
2.21

171
247

1.89
213

1.67
2.10

165
2,06

1.64
2.03

1.62
2.01
159
1.96

1.57
1.9

Note: v, = degrees of freedom for numerator;

v, = degrees of freedom for denominator.

{Continued on next page)
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Table 3-1 Critical Values of F Corresponding to P < .05 (Lightface) and P < .01 (Boldface) (Continued)
lJl‘l

vy 1 2 3 4 5 6 7 8 9 10 1 12 14 16 20 24 30 40 50 75 100 200 500 oo

36 411 326 286 263 248 236 228 221 215 210 206 203 198 193 187 182 178 1.72 169 1.65 162 153 156 155

739 525 438 389 358 335 318 304 294 286 278 272 262 254 243 235 226 217 212 204 200 194 180 18/

38" 410 325 285 262 246 235 226 2.19 214 209 205 202 -196 192 18 180 176 17 167 163 160 157 154 153

735 521 434 386 354 332 315 302 291 282 275 269 259 251 240 232 222 214 208 200 197 190 186 184

40 408 323 284 261 245 234 225 218 212 207 204 200 195 190 184 179 174 169 166 161 159 165 153 153

731 618 431 383 351 329 312 299 288 280 273 266 256 249 237 229 220 211 205 197 1894 188 184 181

42 407 322 283 259 244 232 224 217 211 206 - 202 199 194 189 182 178 173 168 164 160 157 154 151 1.49

727 515 429 380 349 326 310 286 286 277 270 264 254 246 235 226 217 208 202 184 191 185 180 178

44 406 321 282 258 243 231 223 216 210 205 201 198 192 188 1.81 176 172 166 163 158 156 152 150 148

.724 512 426 378 346 324, 307 294 284 275 268 262 252 244 .232 224 215 206 200 192 188 1.82 178 175

,46 405 ,320 281 257 242 230 222 214 209 204 200 1.97 1.91 187 18 175 1.7 165 162 157 1.54 151 148 146

721 510 - 424 376 344 322 305 292 282 273 266 260 250 242 230 222 213 204 198 190 186 1.80 176 172

48 404 319 280" 256 241 230 221 214 208 203 199 196 190 186 179 174 170 164 161 156 153 150 147 145

718 508 422 374 342 320 304 290 280 271 264 258 248 240 228 220 211 202 196 188 184 178 173 170

60 403 318 279 256 240 229 220 2.13 207 202 198 185 190 185 178 174 169 163 160 155 152 148 - 146 144

‘797 506 420 372 341 318 302 288 278 270 262 256 246 239 226 218 210 200 194 186 182 176 171 168

60 400 315 276 2562 237 226 217 290 204 199 195 192 186 181 175 170 165 159 156 150 148 144 141 139

7.08 4988 413 365 334 312 295 282 272 263 256 250 240 232 220 212 203 193 187 179 174 168 163 1.60

70 388 313 274 250 235 223 214 207 201 197 193 189 184 179 172 167 162 156 153 147 145 140 137 135

701 492 408 360 329 307 291 277 267 259 251 245 235 228 215 207 198 188 182 174 169 162 156 153

.80 396 3.1 272 248 233 221 212 205 199 195 191 188 182 177 170 1656 160 154 151 145 142 138 135 132

696 488 404 356 325 304 287 274 264 255 248 241 232 224 211 203 194 184 178. 170 165 167 152 148

00 394 309 270 246 230 219 210 203 187 192 188 185 179 175 168 163 157 151 148 142 139 134 130 128

690 482 398 351 320 299 282 269 259 251 243 236 226 219 206 198 189 179 173 164 159 151 146 143

120 392 307 268 245 229 218 209 202 196 191 187 184 178 173 166 161 156 150 146 139 137 132 128 125

685 479 395 348 317 296 279 266 256 247 240 234 223 215 203 195 186 176 170 161 156 148 142 138

© 384 299 260 237 221 209 201 194 188 183 179 175 169 164 157 152 146 140 135 1.28 124 117 1 1.00

663 460 378 332 302 280 264 251 241 232 224 218 207 1983 187 179 169 159 152 141 136 125 145 100
Note: v, = degrees of freedom for numerator; v, = degrees of freedom for denominator. ) )

Source: Adapted from G. W. Snedecor and W. G. Cochran, Statistical Methods, lowa State University Press, Ames, 1978, pp.
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imental groups, this is known as a single-factor or one-way analysis of
variance. Other forms of analysis of variance (not discussed here) can
be used to analyze experiments in which there is more than one experi-
mental factor. »

Since the distribution of possible F values depends on the size
of each sample and number of samples under consideration, so does
the exact value of F which corresponds to the 5 percent cutoff point.
For example, in our diet study, the number of samples was 4 and the
size of each sample was 7. This dependence enters into the mathemati- ‘
cal formulas used to determine the value at which F gets “big” as two~
parameters known as degree-of-freedom parameters, often denoted v
(Greek nu). For this analysis, the between-groups degrees of freedom
(also called the numerator degrees of freedom because the between-
groups variance is in the numerator of F) is defined to be the number of
samples m minus 1, or v, = m — 1. The within-groups (or denominator)
degrees of freedom is defined to be the number of samples times 1 less
than the size of each sample, v, = m(n — 1). For our diet example, the
numerator degrees of freedom are 4 — 1 = 3, and the denominator de-
grees of freedom are 4(7 — 1) = 24. Degrees of freedom often confuse
and mystify people who are trying to work with statistics. They simply
represent the way number of samples and sample size enter the
mathematical formulas used to construct all statistical tables.

THREE EXAMPLES

We now have the tools needed to form conclusions using statistical
reasoning. We will examine examples, all based on results-published in
the medical literature. I have exercised some literary license with these
examples for two reasons: (1) Medical and scientific authors usually
summarize their raw data with descriptive statistics (like those devel-
oped in Chap. 2) rather than including the raw data. As a result, the
“data from the literature” shown in this chapter—and the rest of the
book—are usually my guess at what the raw data probably looked like
based on the descriptive statistics in the original article.* (2) The
analysis of variance as we developed it requires that each sample con-

" *Since authors often failed to include a complete set of descriptive statistics, I had
to simulate them from the results of their hypothesis tests.
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tain the same number of members. This is often not the case in reality,
so I adjusted the sample sizes in the original studies to meet this re-
striction. We later generalize our statistical methods to handle experi-
ments with different numbers of individuals in each sample or treat-
ment group.

Glucose Levels in Children of Parents with Diabetes

Diabetes is a disease caused by abnormal carbohydrate metabolism
and is characterized by excessive amounts of sugar in the blood and
urine. Type I, or insulin-dependent diabetes mellitus (IDDM), occurs
in children and young adults. Type II, or non-insulin-dependent dia-
betes mellitus (NIDDM), usually occurs in people over 40 years old
and is often detected by elevated glucose levels rather than illness.
Both types of diabetes tend to run in families, but because type II -
tends to occur in adults, few studies focus on determining when ab-
normalities in sugar regulation first appear in children and young
adults. Gerald Berenson and colleagues* wanted to investigate
whether abnormalities in carbohydrate metabolism could be detected
in non-diabetic young adults whose parents had a history of type II
diabetes.

They identified parents who had a history of diébetes in Bogalusa,
Louisiana in 1987 and 1988 from a survey of school age children. Next,
in 1989 and 1991, they recruited children from these families, which
they denoted the cases. Similarly aged offspring were recruited from
families without a history of diabetes to serve as controls. Berenson and
colleagues then measured many physiological variables that might be
related to diabetes, including indicators of carbohydrate tolerance (fast-
ing glucose, insulin, glucagon), blood pressure, cholesterol, weight, and
body mass index.

This approach is called an observational study because the investi-
gator obtains data by simply observing events without controlling them.
Such studies are prone to two potentially serious problems. First, the
groups may vary in ways the investigators do not notice or choose to ig-
nore, and these differences, rather than the treatment itself, may

*G. S. Berenson, W. Bao, S. R. Srinivasan, “Abnormal Characteristics in Young
Offspring of Parents with Non- Insulm-Dependent Diabetes Mellitus.” Am. J. Epidemiol.,
144:962-967, 1996.
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account for the differences the investigators find. These effects are
called confounding factors. For example, smokers are more likely to
develop lung cancer than nonsmokers who appear similar in all other
aspects. Most people interpret this -statistically demonstrated relation-
ship as proving that smoking causes lung cancer. The tobacco industry's
“scientific consultants” argue that people with a genetic predisposition
to lung cancer also have a genetic predisposition to smoking cigarettes.
Nothing in such an observational study alone can definitely prove that
this is not the case; one has to apply other information to dispose of this
possibility (such as the fact that smoke contains cancer-causing chemi-
cals). Second, such studies can be subject to bias in patient recall,
investigator assessment, and selection of the treatment group or the
control group.

Observational studies do, however, have advantages. First, they are
relatively inexpensive because they are often based on reviews of exist-
ing information or information that is already being collected for other
purposes (like medical records) and because they generally do not re-
quire direct intervention by the investigator. Second, ethical considera-
tions or prevailing medical practice can make it impossible to carry out
active manipulation of the variable under study.

Because of the potential difficulties in all observational studies, it
is critical that the investigators explicitly specify the criteria they used
for classifying each subject in the control or case group. Such specifica-
tions help minimize biases when the study is done as well as help you,
as the consumer of the resulting information, judge whether the classifi-
cation rules made sense.

Berenson and colleagues developed explicit criteria for including a
person in their study, including the following.

®  Parental history of diabetes was verified by a physician through
medical records to exclude possible type I diabetics.

®  No child had parents who were both diabetic.

® The cases and control groups had similar ages (15.3 * 4.5 SD
and 15.1 = 5.7 SD).

® All parents were white.

® Control offspring were matched according to age of parents
from families with no history of diabetes in parents, grandpar-
ents, uncles, or aunts.
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A comparison of controls and cases found that the prevalence of
potentially confounding lifestyle factors, such as smoking, drinking alco-
hol, and using oral contraceptives was similar between the two groups.

Figure 3-7 shows data for fasting glucose levels in the 25 offspring
of parents with type II diabetes and 25 control offspring. On the aver-
age, the offspring of parents with type II diabetes had fasting glucose
levels of 86.1 mg/dL, whereas the control offspring had glucose levels
of 82.2 mg/dL. There was not much variability in either group’s fasting
glucose levels. The standard deviations in glucose levels were 2.09 and
2.49 mg/dL, respectively.

How consistent are these data with the null hypothesis that fasting
glucose levels do not differ in children of parents with type II diabetes
compared to children of parents without a history of type II diabetes? In

Control f——e—— Mean + SD

n=25 00 O
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s=2.49 000000000
O 000000000
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Fasting glucose levels, mg/dL
Figure 3-7 Results of a study comparing fasting glucose levels in children of
parents who have type |l diabetes and children of parents without type Il
diabetes. Each child's fasting glucose level is indicated by a circle at the appropri-
ate glucose level. The average fasting glucose level for children of diabetic par-
ents-is higher than the average glucose level in children whose parents did not
have diabetes. The statistical question is to assess whether or not the difference
is due simply to random samphng or to an actual effect of the differences in
parental history.
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other words, how likely are the differences between the two samples of
offspring shown in Fig. 3-7 to be due to random sampling rather than
the difference based on parental history of diabetes?

To answer this question, we perform an analysis of variance.

We begin by estimating the within-groups variance by averaging
the variances of the two groups of children.

2

— 1 2
=2 (sdiabetes + Scontrol

wit

1/2(2.09% + 2.49%) = 5.28 (mg/dL)?

We then go on to calculate the between-groups variance. The first step
is to estimate the standard error of the mean by computing the standard
deviation of the two sample means. The mean of the two sample
means is ‘

)_( = 1/2 ()_(diabetcs + Ycontml)
= 1,(86.1 + 82.2) = 84.2 mg/dL

Therefore the standard deviation of the sample means is

S =

(Xdiabetcs B )_( )2 + ()_(control B )_( )2
m—1

= 2.76 mg/dL

B \/(86.1 — 84.2)% + (82.2 — 84.2)°
2-1

Since the sample size n is 25, the estimation of the population variance
from between the groups is
sz, = ns% = 25(2.76%) = 190.13 (mg/dL)>

Finally, the ratio of these two different estimates of the population vari-
ance is '

oo o _ 19013 _
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The degrees of freedom for the numerator are the number of groups
minus 1, and so v, = 2 — 1 = 1, and the degrees of freedom for the de-
nominator are the number of groups times 1 less than the sample size,
or vy =225 — 1) = 48. Look in the column headed 1 and the row
headed 70 in Table 3-1. The resulting entry indicates that there is
less than a 1 percent chance of F exceeding 7.19; we therefore conclude
that the value of F associated with our observations is “big” and we re-
ject the hypothesis that there is no difference in the average glucose
level in the two groups of children shown in Fig. 3-7.

Hence, we reject the null hypothesis of no difference and conclude
that there are higher levels of fasting glucose in children of diabetics
than in children of nondiabetics. '

Halothane versus Morphine
for Open-Heart Surgery

Halothane is a popular drug to induce general anesthesia because- it is
potent, nonflammable, easy to use, and very safe. Since halothane can
be carried with oxygen, it can be vaporized and administered to the
patient with the same equipment used to ventilate the patient. The pa-
tient absorbs and releases it through the Iungs, making it possible to
change anesthetic -states more rapidly than would be possible with
drugs that have to be administered intravenously. It does, however,
lessen the heart’s ability to pump blood directly by depressing the my-
ocardium itself and indirectly by increasing peripheral venous capacity.
Some anesthesiologists believed that these effects could produce
complications in people with cardiac problems and suggested using
morphine as an anesthetic agent in these patients because it has little
effect on cardiac performance in supine individuals. Conahan and
colleagues® directly compared these two anesthetic agents in a large
number of patients during routine surgery for cardiac valve repair or
replacement.

To obtain two similar samples of patients who differed only in the
type of anesthesia used, they selected the anesthesia at random for each
patient who was suitable for the study.

*T. J. Conahan III, A. J. Ominsky, H. Wollman, and R. A. Stroth, “A Prospective
Random Comparison of Halothane and Morphine for Open-Heart Anesthesia: One Year’s
Experience,” Anesthesiology, 38:528-535, 1973.
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This procedure, called a randomized clinical trial, is the method
of choice for evaluating therapies because it avoids the selection bi-
ases that can creep into observational studies. The randomized clini-
cal trial is an example of what statisticians call an experimental study
because the investigator actively manipulates the treatment under
study, making it possible to draw much stronger conclusions than are
possible from observational studies about whether or not a treatment
produced an effect. Experimental studies are the rule in the physical
sciences and animal studies in the life sciences but are less common
in studies involving human subjects. Randomization reduces biases
that can appear in observational studies, and since all clinical trials
are prospective, no one knows how things will turn out at the begin-
ning. This fact also reduces the opportunity for bias. Perhaps for these
reasons, randomized clinical trials often show therapies to be of little
or no value, even when observational studies have suggested that they
were efficacious.*

Why, then, are not all therapies subjected to randomized clinical
trials? Once something has become part of generally accepted medical
practice—even if it did so without any objective demonstration of its
value—it is extremely difficult to convince patients and their physi-
cians to participate in a study that requires withholding it from some of
the patients.-Second, randomized clinical trials are always prospective;
a person recruited into the study must be followed for some time, often
many years. People move, lose interest, or die for reasons unrelated to
the study. Simply keeping track of people in a randomized clinical trial
is often a major task.

To collect enough patients to have a meaningful sample, it is often
necessary to have many groups at different institutions participating.
While it is great fun for the people running the study, it is often just one
more task for the people at the collaborating institutions. All these fac-
tors often combine to make randomized clinical trials expensive and
difficult to execute. Nevertheless, when done, they provide the most

*For a readable and classic discussion of the place of randomized clinical trials in
providing useful clinical knowledge, together with a sobering discussion of how little of
commonly accepted medical practice has ever been actually shown to do any good, see
A. K. Cochran, Effectiveness and Efficiency: Random Reflections on Health Services,
Nuffield Provincial Hospitals Trust, London, 1972.
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definitive answers to questions regarding the relative efficacy of differ-
ent treatments.

Conahan and colleagues were not faced with many of these prob-
lems because they were studying the effects of different types of anes-
thesia on how a patient did during the operation and the immediate
postoperative recovery in a single hospital. During the operation, they
recorded many hemodynamic variables, such as blood pressures be-
fore induction of anesthesia, after anesthesia but before incision, and
during other important periods during the operation. They also
recorded information relating to length of stay in the postsurgical in-
tensive care unit, total length of hospitalization, and any deaths that
occurred during this period. We will analyze these latter data after we
have developed the necessary statistical tools in Chap. 5. For now, we
will focus on a representative pressure measurement, the lowest mean
arterial blood pressure between the start of anesthesia and the time of
incision. This variable is thought to be a good measure of depression
of the cardiovascular system before any surgical stimulation occurs.
Specifically, we will investigate the hypothesis that, on the average,
there was no difference in patients anesthetized with halothane or
morphine. ~

Figure 3-8 shows the lowest mean arterial blood pressure observed
from the start of anesthesia until the time of incision for 122 patients,
half of whom were anesthetized with each agent. Pressures were
rounded to the nearest even number, and each patient’s pressure is rep-
resented by a circle. On the average, patients anesthetized with
halothane had pressures 6.3 mmHg below those anesthetized with mor-
phine. There is quite a bit of overlap in the pressures observed in the
two different groups because of biological variability in how different
people respond to anesthesia. The standard deviations in pressures are
12.2 and 14.4 mmHg for the people anesthetized with halothane and
morphine, respectively. Given this, is the 6.3 mmHg difference large
enough to assert that halothane produced lower lowest mean arterial
pressures? .

To answer this question, we perform an analysis of variance ex-
actly as we did to compare length of hospitalizations in the appropri-
ately and inappropriately treated pyelonephritis patients. We estimate
the within-groups variance by averaging the estimates of the variance
obtained from the two samples:
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Figure 3-8 Lowest mean arterial blood pressure between the beginning of
anesthesia and the incision in patients during open-heart surgery for patients
anesthetized with halothane. and “morphine. Are the observed differences
consistent with the hypothesis that, on the average, anesthetic did not affect
blood pressure?

520 = Vo(sh, + 5200 = 2(12.2% + 14.4%) = 178.1 mmHg?

Since this estimate of the population variance is computed from the
variances of the separate samples, it does not depend on whether or not
the means are different. ‘

Next, we estimate the population variance by assuming that the
hypothesis that halothane and morphine produce the same effect on
arterial blood pressure is true. In that case, the two groups of patients
in Fig. 3-8 are simply two random samples drawn from a single popu-
lation. As a result, the standard deviation of the sample means is an
estimate of the standard error of the mean. The mean of the two sam-
ples means is
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X = V2o + Xo) = ¥2(66.9 + 73.2) = 70 mmHg

The standard deviation of the m = 2 sample means is

\/()_(hlo - )_()2 + (Xmor - )_()2
s}=
m—1

66.9 — 70.0)* + (73.2 — 70.0)?
= \/( ) ( ) = 4.46 mmHg

2—-1

Since the sample size #n is 61, the estimate of the population variance
computed from the variability in the sample means is

52, = ns% = 61(4.46%) = 1213 mmHg?
To test whether these two estimates are compatible, we compute

P St 1213

The degrees of freedom for the numerator are v,=m—1=2—-1=1,
and the degrees of freedom for the denominator are vy =m(n — 1) =
2(61 — 1) = 120. Since F = 6.81 is greater than the critical value of 3.92
from (interpolating in) Table 3-1, we conclude that there is less than a 5
percent chance that our data were all drawn from a single population. In
other words, we conclude that halothane produced lower lowest mean
arterial blood pressures than morphine did, on the average. .

Given the variability in response among patients to each drug
(quantified by the standard deviations), do you expect this statistically
significant result to be clinically significant? We will return to this
question later.

Menstrual Dysfunction in Distance Runners

Infrequent or suspended menstruation can be a symptom of serious
metabolic disorders, such as anorexia nervosa (a psychological disor-
der that leads people to stop eating, then waste away) or tumors. of



56 . CHAPTER 3

the pituitary gland. Infrequent or suspended menstruation can also
frustrate a woman’s wish to have children. It can also be a side effect
of birth control pills or indicate that a woman is pregnant or entering
menopause. Gynecologists see many women who complain about ir-
regular menstrual cycles and must decide how to diagnose and per-
haps treat this possible problem. In addition to these potential expla-
nations, there is some evidence that strenuous exercise, perhaps by
changing the percentage of body fat, may affect the ovulation cycle.
Since jogging and long-distance running have become popular,
Edwin Dale and colleagues® decided to investigate whether there is a
relationship between the frequency of menstruation and the amount
of jogging young women do, as well as to look for possible effects
on body weight, fat, and levels of circulating hormones that play an
important role in the menstrual cycle.

- They did an observational study of three groups of women. The
first two groups were volunteers who regularly engaged in some
form of running, and the third, a control group, consisted of women
who did not run but were otherwise similar to the other two groups.
The runners were divided into joggers who jog “slow and easy” 5 to
30 miles per week, and runners who run more than 30 miles per
week and combine long, slow distance with speed work. The investi-
gators used a survey to show that the three groups were similar in
the amount of physical activity (aside from running), distribution of
ages, heights, occupations, and type of birth control methods being
used.

Figure 3-9 shows the number of menstrual periods per year for the
26 women in each experimental group. The women in the control group
averaged 11.5 menses per year, the joggers averaged 10.1 menses. per
year, and the runners averaged 9.1 menses per year. Are these differ-
ences in mean number of menses compatible with what one would ex-
pect from the variability within each group?

To answer this question, we first estimate the population variance
by averaging the variance from within the groups

*E. Dale, D. H. Gerlach, and A. L. Wilhite, “Menstrual Dysfunctlon in Distance
Runners,” Obstet. Gynecol., 54:47-53, 1979.
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Figure 3-9 The number of menstrual cycles per year in women who were
sedentary, joggers, and_long-distance runners. The mean values of the three
samples of women were different. Is this variation beyond what would be ex-
pected from random sampling, i.e., that the amount of running one does has no
effect on the number of menstrual cycles, or is it compatible with the view that
jogging affects menstruation? Furthermore, if there is an effect, is there a differ-
ent effect for joggers and long-distance runners?
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2
Swit = 3(scon Jog + srun)

= 1/3(1.3% + 2.1 + 2.4% = 3.95 (menses/year)?

To estimate the population variance from the variability in the sample
means, we must first estimate the standard error of the mean by com-
puting the standard deviation of the means of the three samples. Since
‘the mean of the three means is

X=Ys&0n + Xipp + X

con ]Og

= 13(11.5 + 10.1 4+ 9.1) = 10.2 menses/year

Our estimate of the standard error is

X m-—1

\/( won — X2+ Koy — 07 + Xy — X

B \/(11.5 — 1022 + (10.1 — 10.2)* + (9.1 — 10.2)2
3-1

= 1.2 menses/year

The sample size n is 26, and so the estlmate of the population variance
from the variability in the means is

Soer = N5% = 26(1. 22) = 37.44 (menses/year)’

Finally,

The numerator has m —1=3—1=2 degrees of freedom and the

. denominator has m(n — 1) = 3(26 — 1) = 75 degrees of freedom. Inter-
polating in Table 3-1, we find that F will exceed 4.90 only 1 percent of
the time when all the groups are drawn from a single population; we con-
clude that jogging or running has an effect on the frequency of
menstruation.
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When a woman comes to her gynecologist complaining about ir-
regular or infrequent periods, the physician should not only look for
biochemical abnormalities but also ask whether or not she jogs.

One question remains: Which of the three groups differed from the
others? Does one have to be a marathon runner to expect menstrual
dysfunction, or does it accompany less strenuous jogging? Or is the ef-
fect graded, becoming more pronounced with more strenuous exercise?
We will have to defer answering these questions until we develop an-
other statistical tool, the 7 test, in Chap. 4.

PROBLEMS

3-1 When labor has to be 1nduced the mother’s cervix can fail to soften and
“enlarge, prolonging the labor and perhaps requiring delivery by cesarean
section. To investigate whether the cervix can be softened and dilated by
treating it with a gel containing prostaglandin E,, C. O’Herlihy and
H. MacDonald (“Influence of Preinduction Prostaglandin E, Vaginal Gel
on Cervical Ripening and Labor,” Obstet. Gynecol., 54:708-710, 1979)
applied such a gel to the cervixes of 21 women who were having labor
induced and a placebo gel that contained no active ingredients to 21
other women who were having labor induced. The two groups of women
were of similar ages, heights, weeks of gestation, and initial extent of
cervical dilation before applying the gel. The labor of women treated
with prostaglandin E, averaged 8.5 h, and the labor of control women av-
eraged 13.9 h. The standard deviations for these two groups were 4.7 and
4.1 h, respectively. Is there evidence that the prostaglandin gel shortens
labor?

3-2 Itis generally believed that infrequent and short-term exposure to pol-
lutants in tobacco, such as carbon monoxide, nicotine, benzo[alpyrene,
and oxides of nitrogen, will not permanently alter lung function in
healthy adult nonsmokers. To investigate this hypothesis, James
White and Herman Froeb (“Small-Airways Dysfunction in Non-
smokers Chronically Exposed to Tobacco Smoke,” N. Engl. J. Med.,
302:720-723, 1980, used by permission) measured lung function in
cigarette smokers and nonsmokers during a “physical fitness profile” at
the University of California, San Diego. They measured how rapidly a
person could force air from the lungs (mean forced midexpiratory
flow). Reduced forced midexpiratory flow is associated with small-air-
ways disease of the lungs. For the women they tested White and Froeb
found:
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Mean forced
midexpiratory

flow, L/s
Group No. of subjects Mean sSD
Nonsmokers
Worked in clean
environment 200 3.17 - 0.74
Worked in smoky
environment 200 - 2.72 0.71
Light smokers 200 2.63 0.73
Moderate smokers 200 2.29 0.70
Heavy smokers 200 2.12 0.72

Is there evidence that the presence of small-airways disease as measured
by this test, is any different among the different experimental groups?
Elevated levels of plasma high-density-lipoprotein (HDL) cholesterol
may. be associated with a lowered risk of coronary heart disease. Several
studies have suggested that vigorous exercise may result in increased
levels of HDL. To investigate whether or not jogging is associated with
an increase in the plasma HDL concentration, G. Harley Hartung and
colleagues (“Relation of Diet to High-Density-Lipoprotein Cholesterol
in Middle-Aged Marathon Runners, Joggers, and Inactive Men,” N. Engl.
J. Med., 302:357-361, 1980, used by permission) measured HDL con-
centrations in middle-aged (35 to 66 years old) marathon runners, jog-
gers, and inactive men. The mean HDL concentration observed in the in-
active men was 43.3 mg/dL with a standard deviation of 14.2 rhg/dL.
The mean and standard deviation of the HDL concentration for the jog-
gers and marathon runners were 58.0 and 17.7 mg/dL and 64.8 and 14.3
mg/dL, respectively. If there were 70 men in each group, test the hypoth-
esis that there is no difference in the average HDL concentration be-
tween these groups of men. '

If heart muscle is briefly deprived of oxygen—a condition known as
ischemia—the muscle stops contracting and, if the ischemia is long
enough or severe enough, the muscle dies. When the muscle dies, the per-
son has a myocardial infarction (heart attack). Surprisingly, when the
heart muscle is subjected to a brief period of ischemia before a major
ischemic episode, the muscle is more able to survive the major ischemic
episode. This phenomenon is known as ischemic preconditioning. This
protective effect of ischemic preconditioning is known to involve activa-
tion of adenosine A, receptors, which stimulate protein kinase C (PKC), a
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protein involved in many cellular processes including proliferation,
migration, secretion, and cell death. Akihito Tsuchida and colleagues
(“o;-Adrenergic Agonist Precondition Rabbit Ischemic Myocardium In-
dependent of Adenosine by Direct Activation of Protein Kinase C,” Circ.
Res., 75:576—585, 1994) hypothesized that o;-adrenergic receptors might
have an independent rule in this process. To address this question,
Tsuchida and colleagues subjected isolated rabbit hearts to a brief 5-min
ischemia or exposed the hearts to a variety of adenosine and c;-adrener-
gic agonists and antagonists. In any case, following a 10-min recovery pe-
riod, the heart was subject to ischemia for 30 min and the size of the re-
sulting infarct measured. The control group was only subjected to 30 min
of ischemia. If each group included 7 rabbit hearts, is there evidence that
pretreatment with ischemia or a pharmacological agent affected infarct
size, measured as the volume of heart muscle that dies?

Infarct size, cm?

Group Mean SEM

Control 0.233 0.024

Ischemic preconditioning (PC) 0.069 0.015

a,-Adrenergic receptor agonist 0.065 0.008
{Phenylephrine) ' .

adenosine receptor antagonist 0.240 0.033
(8-p-[sulfophenyl] theophylline)

a,-Adrenergic receptor antagonist 0.180 0.033
{Phenoxybenzamine)

Protein kinase C inhibitor 0.184 0.038

(Polymyxin B)

Men and women differ in risk of spinal fracture. Men are at increased risk
for all types of bone fractures until approximately 45 years of age, an ef-
fect probably due to the higher overall trauma rate in men during this
time. However, after age 45, women are at increased risk for spinal frac-
ture, most likely due to age-related increases in osteoporosis, a disease
characterized by decreased bone density. S. Kudlacek and colleagues
(“Gender Differences in Fracture Risk and Bone Mineral Density,” Matu-
ritas, 36:173—180, 2000) wanted to investigate the relationship between
gender and bone density in a group of older adults who have had a verte-
bral bone fracture. Their data are presented below. Are there differences
in vertebral bone density between similarly aged men and women who
have had a vertebral bone fracture?
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Vertebral bone density (mg/cm?)

Group n Mean SEM

Women with bone 50 70.3 255
fractures . i

Men with bone fractures 50 76.2 3.11

Burnout is a term that loosely describes a condition of fatigue, frustra-

tion, and anger manifested as'a lack of enthusiasm for and feeling of
entrapment in one’s job. It has been argued that professions such as
teaching and nursing, which require high levels of commitment, are most
subject to burnout. Moreover, since burnout is often linked to stress, it
may be-that nurses who specialize in so-called high-stress areas, such as
intensive care units, experience more burnout and experience it sooner
than nurses in less-stressful areas. Anne Keane and her associates
(“Stress in ICU and Non-ICU Nurses,” Nurs. Res., 34:231-236, 1985)
studied several aspects of nursing burnout, including whether there was a
difference in burnout between nurses who worked in intensive care units
(ICUs), stepdown units (SDUs) or intermediate care units, and general
medical units. They administered a questionnaire that could be used to
construct a score called the Staff Burnout Scale for Health Professionals
(SBS-HP), in which higher scores indicate more burnout. Do the data be-
low suggest a difference in burnout among the units surveyed?

ICU SDu General

Surgical Medical Surgical Medical Surgical Medical

Mean score  49.9 51.2 57.3 46.4 43.9 65.2

Standard
deviation 14.3 13.4 14.9 14.7 16.5 20.5
Sample size 16 16 16 16 16 16

High doses of estrogen interfere with male fertility in many animals,
including mice. However, there may be significant differences in the
response to estrogen in different mouse strains. To compare estrogen
responsiveness in different strains of mice, Spearow and colleagues
(*“Genetic Variation in Susceptibility to Endocrine Disruption by Estro-
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3-8

gen in Mice,” Science, 285:1259-1261, 1999) implanted capsules con-
taining 1 pg of estrogen into four different strains of juvenile male
mice. After 20 days, they measured their testicular weight. They found:

Testes weight {(mg)

Mouse strain n Mean SEM

CD-1 13 142 ’ 12

S15/Jls 16 82 3
-C17/JIs 17 60 5

B6 15 38 1

Is there sufficient evidence to conclude that any of these strains differ
in response to estrogen? (The formulas for analysis of variance with
unequal sample sizes are in Appendix A.)

Several studies suggest that schizophrenic patients have lower IQ scores
measured before the onset of schizophrenia (premorbid IQ) than would
be expected based on family and environmental variables. These deficits
can be detected during childhood and increase with age. Catherine
Gilvarry and colleagues (“Premorbid IQ in Patients with Functional Psy-
chosis and Their First-Degree Relatives,” Schizophr. Res. 41:417-429,
2000) investigated whether this was also the case with patients diag-

NART score
Group > n ; Mean - SD
Controls 50 112.7 7.8
Psychotic patients 28 16 10.3

{no obstetric -
complications)
Relatives of psychotic 25 . 114.3 121
patients (no obstetric .
complications)

. Psychotic patients with 13 1104 10.1

obstetric complications

Relatives of psychotic 19 1164 . 8.8

patients with obstetric
complications
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nosed with affective psychosis, which encompasses schizoaffective dis-
order, mania, and major depression. In addition, they also wanted to as-
sess whether any IQ deficits could be detected in first-degree relatives
(parents, siblings, and children) of patients with affective psychosis.
They administered the National Aduit Reading Test (NART), which is an
indicator of premorbid IQ, to a set of patients with affective psychosis,
their first-degree relatives, and a group of normal subjects without any
psychiatric history. Gilvarry and colleagues also considered whether
there was an obstetric complication (OC) 'during the birth of the psy-
chotic patient, which is another risk factor for impaired intellectual de-
velopment. Is there any evidence that NART scores differ among these
groups of people? (The formulas for analysis of variance with unequal
sample sizes are in Appendix A.)




Chapter 4

The Special Case of Two
Groups: The ¢ Test

As we have just seen in Chapter 3, many investigations require comparing
only two groups. In addition, as the last example in Chapter 3 illustrated,
when there are more than two groups, the analysis of variance allows you
to conclude only that the data are not consistent with the hypothesis that
all the samples were drawn from a single population. It does not help you
decide which one or ones are most likely to differ from the others. To an-
swer these questions, we now develop a procedure that is specifically de-
signed to test for differences in two groups: the 7 fest or Student’s t test.
While we will develop the ¢ test from scratch, we will eventually show that
it is just a different way of doing an analysis of variance. In particular, we
will see that F = #*> when there are two groups.

The ¢ test is the most common statistical procedure in the medical
literature; you can expect it to appear in more than half the papers you
read in the general medical literature.* In addition to being used to

*A, R. Feinstein: “Clinical Biostatistics: A Survey of the Statistical Procedures in
General Medical Journals,” Clin. Pharmacol. Ther, 15:97-107, 1974.
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compare two group means, it is widely applied incorrectly to compare
multiple groups, by doing all the pairwise comparisons, for example, by
comparing more than one intervention with a control condition or the
state of a patient at different times following an intervention. Figure 4-1
shows the results of an analysis of the use of ¢ tests for the clinical jour-
nal Circulation; 54 percent of all the papers used the ¢ test, more often
than not to analyze experiments for which it'is not appropriate. As we
will see, this incorrect use increases the chances of rejecting the
hypothesis of no effect above the nominal level, say 5 percent, used to
select the cutoff value for a “big” value of the test statistic ¢. In practical
terms, this boils down to increasing the chances of reporting that some
therapy had an effect when the evidence does not support this conclu-
sion.

50
No statistical
analysis
Incorrect use
of t test to
test multigroup
. hypothesis
]
o 254
5] .
a -Appropriate
t tests Appropriate
use of
other tests
Anova
0

Figure 4-1 Of 142 original articles published in Vol. 56 of Circulation (exclud-
ing radiology, clinicopathologic, and case reports), 39 percent did not use sta-
tistics; 34 percent used a t test appropriately to compare two groups, analy-
sis of variance (ANOVA), or other methods; and 27 percent used the t test
incorrectly to compare more than two groups. with each other. (From S. A.
Glantz, "How to Detect, Correct, and Prevent Errors in the Medical Litera-
ture,” Circulation, 61:1~7, 1980. By permission of the American Heart Asso-
ciation, Inc.) . -
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THE GENERAL APPROACH

Suppose we wish to test a new drug that may be an effective diuretic.
We assemble a group of 10 people and divide them at random into two
groups a control group that receives a placebo and a treatment group
that receives the drug; then we measure their urine productlon for 24 h.
Figure 4-2A shows the resulting data. The average urine production of -
the group receiving the diuretic is 240 mL higher than that of the group
receiving the placebo. Simply looking at Fig. 4-2A, however, does not
provide very convincing evidence that this difference is due to anything
more than random samplmg

Nevertheless, we pursue the problem ‘and give the placebo or drug to an-
other 30 people to obtain the results shown in Fig. 4-2B. The mean re-
sponses of the two groups of people, as well as the standard deviations,
are almost identical to those observed in the smaller samples shown in
Fig. 4-2A. Even so, most observers are more confident in claiming that
the diuretic increased average urine output from the data in Fig. 4-2B
than the data in Fig. 4-24, even though the samples in each case are good
representatives of the underlying population. Why?

' As the sample size increases, most observers become more confi-
dent in their estimates of the population means, so they can begin to
discern a difference between the people takmg the placebo or the drug.
Recall that the standard error of the mean quantifies the uncertainty of
the estimate of the true population mean based on a sample. Further-
more, as the sample size 1ncreases the standard error of the mean
decreases according to

P
G}_{:W

where n is the sample size and o is the standard deviation of the popu-
lation from which the sample was drawn. As the sample size increases,
the uncertainty in the estimate of the difference of the means between
the people who received placebo and the patients who received the drug
decreases relative to the difference of the means. As a result, we be-
come more confident that the drug actually has an effect. More pre-
cisely, we become less confident in the hypothesis that the drug had no
effect, in which case, the two samples of patients could be considered
two samples drawn from a single population.
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Figure 4-2 (A) Results of a study in which five people were treated with a
placebo and five people were treated with a drug thought to increase daily urine
production. On the average, the five people who received the drug produced
more urine than the placebo group.-Are these data convincing evidence that the
drug is an effective diuretic? (B) Results of a similar study with 20 people in
each treatment group. The means and standard deviations associated with the
two groups are similar to the results in panel A. Are these data convincing evi-
dence that the drug is an effective diuretic? If you changed your mind, why did

you do it?
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To formalize this logic, we will examine the ratio

difference in sample means

~ standard error of difference of sample means

When this ratio is small, we will conclude that the data are compatible
with the hypothesis that both samples were drawn from a single popu-
lation. When this ratio is large, we will conclude that it is unlikely that
the samples were drawn from a single population and assert that the
treatment (e.g., the diuretic) produced an effect.

This logic, while differing in emphasis from that used to develop
the analysis of variance, is essentially the same. In both cases, we are
comparing the relative magnitude of the differences in the sample
means with the amount of variability that would be expected from look-
ing within the samples.

To compute the 7 ratio we need to know two thmgs the difference
of the sample means and the standard error of this difference. Comput-
ing the difference of the sample means is easy; we simply subtract.
Computing an estimate for the standard error of this difference is a bit
more involved. We begin with a sliglitly more general problem, that of
finding the standard deviation of the difference of two numbers drawn
at random from the same population. -

THE STANDARD DEVIATION OF A DIFFERENCE
OR A SUM

Figure 4-3A shows a population with 200 members. The mean is 0, and
the standard deviation is 1. Now, suppose we draw two samples at ran-
dom and compute their difference. Figure 4-3B shows this result for the
two members indicated by solid circles in panel A. Drawing five more
pairs of samples (indicated by different shadings in panel A) and com-
puting their differences yields the corresponding shaded points in panel
B. Note that there seems to be more variability in the differences of the
samples than in the samples themselves. Figure 4-3C shows the results
of panel B, together with the results of drawing another 50 pairs of
numbers at random and computing their differences. The standard devi-
ation of the population of differences is about 40 percent larger than the
standard deviation of the population from which the samples were
drawn.
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Figure 4-3 If one selects pairs of members of the population in panel A at ran-
dom and computes the difference, the population of differences, shown in panel
B, has a wider variance than the original population. Panel C shows another 100
values for differences of pairs of members selected at random from the popula-
tion in A to make this point again.

In fact, it is possible to demonstrate mathematically that the vari-
ance of the difference (or sum) of two variables selected at random
equals the sum of the variances of the two populations from which the
samples were drawn. In other words, if X is drawn from a population
with standard deviation oy and Y is drawn from a population with stan-
dard deviation oy, the distribution of all poss1ble values of X — Y (or
X + Y) will have variance

2 .2 2 2
Ox—y = Ox+y = Ox T Oy

This result should seem reasonable to you because when you select
pairs of values that are on opposite (the same) sides of the population
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mean and compute their difference (sum), the result will be even farther
from the mean.

Returning to the example in Fig. 4-3, we can observe that both the
first and second numbers were drawn from the same population, whose
variance was 1, and so the variance of the difference should be

0% _y=o0x+tor=1+1=2

Since the standard deviation is the square root of the variance, the stan-
“dard deviation of the population of differences will be V2 times the
standard deviation of the original population, or about 40 percent big-
ger, confirming our earlier subjective impression.*
When we wish to estimate the variance in the difference or sum of
members of two populations based on the observations, we simply
replace the population variances o2 in the equation above with the

*The fact that the sum of randomly selected variables has a variance equal to the
sum of the variances of the individual numbers explains why the standard error of the
mean equals the standard deviation divided by Vn. Suppose we draw n numbers at ran-
dom from a population with standard deviation ¢. The mean of these numbers will be -

X=

T =

X, + X, + X, + - + X))

50

X=X, +X,+X,+ - +X

n

N

Since the variance associated with each of the X;’s is a2, the variance of nX will be
,o'ﬁ)—(=o'2+o'2+o'2+ -+ + ¢ = no?
and the standard deviation will be
o, %= \/;0' .
BuF we want the standard deviation of X, which is nX/n, therefore
0% = Viain = oV
which is the formula for the standard error of the mean. Note that we made no assump-

tions about the population from which the sample was drawn. (In particular, we did not
assume that it had a normal distribution.)
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estimates of the variances computed from our samples.

2 — 2 2
Sx—y = Sy T Sy

~ The standard error of the mean is just the standard deviation of the

population of all possible sample means of samples of size n, and so we
can find the standard error of the difference of two means using the
equation above. Specifically,

St-v = sk + 5%
in which case
szp= Vsk+ sl
Now we are ready to construct the ¢ ratio from the definition in the last

section.

USE OF t TO TEST HYPOTHESES ABOUT
TWO GROUPS

Recall that we decided to examine the ratio

difference in sample means

t= .
standard error of difference of sample means

We can now use the result of the last section to translate this definition
into the equation

)_(1 - )_(2
Vs2 + 5%
1 2

Alternatively, we can write ¢ in terms of the sample standard deviations
rather than the standard errors of the mean

X, - X,
V(si/n) + (s3/n)

in which # is the size of each sample.
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If the hypothesis that the two samples were drawn from the same
population is true, the variances sj and s3 computed from the two sam-
ples are both estimates of the same population variance o2, Therefore,
we replace the two different estimates of the population variance in the
equation above with a single estimate, s°, that is obtained by averaging
these two separate estimates

52 =12(s? + 52)
This is called the pooled-variance estimate since it is obtained by pool-

ing the two estimates of the population variance to obtain a single esti-
mate. The ¢-test statistic based on the pooled-variance estimate is

)_(1 ")_(2

V(s*/n) + (s*/n)

The specific value of t one obtains from any two samples depends
not only on whether or not there actually is a difference in the means of
the populations from which the samples were drawn but also on which
specific individuals happened to be selected for the samples. Thus, as
for F, there will be a range of possible values that ¢ can have, even
when both samples are drawn from the same population. Since the
means' computed from the two samples will generally be close to the
mean of the population from which they were drawn, the value of ¢ will
tend to be small when the two samples are drawn from the same popu-
lation. Therefore, we will use the same procedure to test hypotheses
with ¢ as we did with F in Chapter 3. Specifically, we will compute ¢
from the data, then reject the assertion that the two samples were drawn
from the same population if the resulting value of ¢ is “big.”

Let us return to the problem of assessing the value of the diuretic
we were discussing earlier. Suppose the entire population of interest
contains 200 people. In addition, we will assume that the diuretic had
no effect, so that the two groups of people being studied can be consid-
ered to represent two samples drawn from a single population. Figure
4-4A shows this population, together with two samples of 10 people
each selected at random for study. The people who received the placebo
are shown as dark circles, and the people who received the diuretic are
shown as lighter circles. The lower part of panel A shows the data as
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Figure 4-4 A population of 200 individuals and two groups selected at random
for study of a drug designed to increase urine production but which is totally
ineffective. The people shown as dark circles received the placebo and those
with the lighter circles received the drug. An investigator would not see the
entire population but just the information as reflected in the lower part of panel
A; nevertheless, the two samples show very little difference, and it is unlikely
that one would have concluded that the drug had an effect on urine production.
Of course, there is nothing special about the two random samples shown in
panel A, and an investigator could just as well have selected the two groups of
people in panel B for study. There is more difference between these two
groups than the two shown in panel A, and there is a chance that the investiga-
tor would think that this difference is due to the drug’s effect on urine produc-
tion rather than simple random sampling. Panel C shows yet another pair of ran-
dom samples the investigator might have drawn for the study.

they would appear to the investigator, together with the mean and
standard deviations computed from each of the two samples. Looking
at these data certainly does not suggest that the diuretic had any effect. -
The value of 7 associated with these samples is —0.2.

Of course, there is nothing special about these two samples, and
we could just as well have selected two different groups of people to
study. Figure 4-4B shows another collection of people that could have
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been selected at random to receive the placebo (dark circles) or diuretic
(light circles). Not surprisingly, these two samples differ from each
other as well as the samples selected in panel A. Given only the data in
the lower part of panel B, we might think that the diuretic increases
urine production. The ¢ value associated with these data is —2.1. Panel
C shows yet another pair of samples. They differ from each other and
the other samples considered in panels A and B. The samples in panel C
yield a value of O for ¢.

We could continue this process for quite a long time since there are
more than 10% different pairs of samples of 10 people each that we
could draw from the population of 200 individuals shown in Fig. 4-4A.
We can compute a value of ¢ for each of these 10?’ different pairs of
samples. Figure 4-5 shows the values of ¢ associated with 200 different
pairs of random samples of 10 people each drawn.from the original pop-
ulation, including the three specific pairs of samples shown in Fig. 4-4.
The distribution of possible ¢ values is symmetrical about ¢ = 0 because
it does not matter which of the two samples we subtract from the other.
As predicted, most of the resulting values of ¢ are close to zero; ¢ rarely
is below about —2 or above +2.

Figure 4-5 allows us to determine what a big ¢ is. Panel B shows
that ¢ will be less than —2.1 or greater than +2.1°10 out of 200, or
5 percent of the time. In other words, there is only a 5 percent chance of
getting a value of ¢ more extreme than —2.1 or +2.1 when the two sam-
ples are drawn from the same population. Just as with the F distribu-
tion, the number of p()ssible t values rapidly increases beyond 10?7 as
the population size grows, and the distribution of possible ¢ values ap-
proaches a smooth curve. Figure 4-5C shows the result of this limiting
process. We define the cutoff values for ¢ that are large enough to be
called “big” on the basis of the total area in the two tails. Panel C shows
that only 5 percent of the possible values of ¢ will lie beyond —2.1 or
+2.1 when the two samples are drawn from a single population. When -
the data are associated with a value of ¢ beyond this range, it is custom-
ary to conclude that the data are inconsistent with the hypothesis of no
difference between the two samples and report that there was a differ-
ence in treatment.

The extreme values of ¢ that lead us to reject the hypothesis of
no difference lie in both tails of the distribution. Therefore, the
approach we are taking is sometimes called a two-tailed t test.
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Figure 4-5 The results of 200 studies like that described in Fig. 4-4; the three
specific studies from Fig. 4-4 are indicated in panel A. Note that most values of
the t statistic cluster around 0, but it is possible for some values of t to be quite
large, exceeding 1.5 or 2. Panel B shows that there are only 5 chances in 100 of
t exceeding 2.1 in magnitude if the two samples were drawn from the same
population. If one continues examining all possible samples drawn from the
population and our pairs of samples drawn from the same population, one
obtains a distribution of all possible t values which becomes the smooth curve in
panel C. In this case, one defines the critical value of t by saying that it is unlikely
that this value of t statistic was observed under the hypothesis that the drug had
no effect by taking the 5 percent most extreme error areas under the tails of
distribution and selecting the t value corresponding to the beginning of this
-region. Panel D shows that if one required a more stringent criterion for rejecting
the. hypothesis for no difference by requiring that t be in the most extreme 1
percent of all possible values, the cutoff value of tis 2.878. .
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Occasionally, people use a one-tailed ¢ test, and there are indeed
cases where this is appropriate. One should be suspicious of such
one-tailed tests, however, because the cutoff value for calling ¢ “big”
for a given value of P is smaller. In reality, people are almost always
looking for a difference between the control and treét_ment groups,
and a two-tailed test is appropriate. This book always assumes a two-
tailed test. ‘

Note that the data in Fig. 4-4B are associated with a ¢ value of-2.1,
which we have decided to consider “big.” If all we had were the data
shown in Fig. 4-5B, we would conclude that the observations weré in-
consistent with the hypothesis that the diuretic had no effect and report
that it increased urine production, and even though we did the statisti-
cal analysis correctly, our conclusion about the drug would be wrong.

. Reporting P < .05 means that if the trea_tment had no effect,
there is less than a 5 percent chance of getting a value of ¢ from the
data as far or farther from 0 as the critical value for ¢ to be called
“big.” It does not mean it is impossible to get such a large value of ¢
when the treatment has no effect. We could, of course, be more con-
servative and say that we will reject the hypothesis of no difference
between the populations from which the samples were drawn if ¢ is
in the most extreme 1 percent of possible values. Figure 4-5D shows
that this would require 7 to be beyond —2.88 or +2.88 in this case,
so we would not erroneously conclude that the drug had an effect on
urine output in any of the specific examples shown in Fig. 4-4. In the
long run, however, we will make such errors about 1 percent of the
time. The price of this conservatism is decreasing the chances of
concluding that there is a difference when one really ex1sts Chapter
6 discusses this trade-off in more detail.

The critical values of ¢, like F, have been tabulated and depend not
only on the level of confidence with which one rejects the hypothesis of
no difference — the P’ value—but also on the sample size. As with the
F distribution, this dependence on sample size enters the table as the de-
grees of freedom v, which is equal to 2(n — 1) for this # test, where n is
the size of each sample As the sample size increases, the value of ¢
needed to reject the hypothesis ‘of no difference decreases. In" other
words, as sample size increases, it ‘becomes possible to detect smaller
differences with a glven level of confidence. Reﬂectlng on F1g 4-2
should convince you that this is reasonable.
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WHAT IF THE TWO SAMPLES ARE NOT
THE SAME SIZE?

It is easy to generalize the ¢ test to handle problems in which there are
different numbers of members in the two samples being studied. Recall
that ¢ is defined by

}_(1 — }_(2
A s
Sk, T Sk,
in which s3 and sx are the standard errors of the means of the two

samples. If the first sample is of size n; and the second sample contains
n, members,

2 2
: s s
2 _ 51 2 _ 2
s§,=— and s% =—=

in which s, and s, are the standard deviations-of the two samples. Use
these definitions to rewrite the definition of ¢ in terms of the sample
standard deviations

_ )_(1 _ }_(2
V(2 In)) + (s3/ny)

When the two samples are dlfferent sizes, the pooled estimate of the
variance is given by

e (n, — Ds? + (n, — Ds3
n,+n,—2

so that

X, - X,
\/(sz/nl) + (s*/ny)

This is the definition of 7 for comparing two samples of unequal size.
There are v = n; + n, — 2 degrees of freedom.

Notice that this result reduces to our earlier results when the two
sample sizes are equal, that is, when ny, = n, = n.
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THE EXAMPLES REVISITED

We can now use the 7 test to analyze the data from the examples we
discussed to illustrate the analysis: of variance. The conclusions will
be no different from those obtained with analysis of .variance be-
cause, as already stated, the 7 test is just a special case of analysis of
variance.

Glucose Levels in Children of Parents with Diabetes

From Fig. 3-7,.the 25 children of parents with type II diabetes had an
average fasting glucose level of 86.1 mg/dL and the 25 children of
parents without diabetes had an average fasting glucose level of
82.2 mg/dL. The standard deviations for both these groups were
2.09 and 2.49 mg/dL, respectively. Since the sample sizes are equal,
the pooled estimate for the variance is 52 =17, (2.09% + 2.49%) =
5.28 (mg/dL)>.

86.1 — 82.2

= = 6.001
V(5.28/25) +(5.28/25)

with v = 2(n — 1) = 2(25 — 1) = 48. Table 4-1 shows that, for 48 de-
grees of freedom, the magnitude of 7 will exceed 2.011 only 5 percent
of the time, and 2.682 only 1 percent of the time when the two samples
are drawn from the same population. Since the magnitude of ¢ associ-
ated with our data exceed 2.682, we conclude that the children of par-
ents with type II diabetes have significantly higher fasting glucose lev-
els than children of parents without type II diabetes (P < .01).

Halothane versus Morphine for Opeh-Heart Surgery

Figure 3-8 showed that the lowest mean arterial blood pressure between
the start of anesthesia and the beginning of the incision was 66.9 mmHg
in the 61 patients anesthetized with halothane and 73.2 in the 61 patients
anesthetized with morphine. The standard deviations of the blood pres-
sures in the two groups of patients was 12.2 and 14.4 mmHg, respec-
tively. Thus,

= 12(12.2? + 14.4% = 178.1 mmHg?
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HOW TO TEST FOR DIFFERENCES BETWEEN GROUPS
Table 4-1
Critical Values of t {Two-Tailed)
. Probability of greater value, P

v 050 0.20 0.10 0.05 0.02 0.01 0.005 0.002 0.001
i‘I -1.000 3.078 6314 . 1_2.706 .31.821° 63.657 127.321 318.309 636.619

2 0816 1886 2920 4.303 6.965 9.925 14.089 22.327 31.599

3 0.765 1.638 2353 3.182 4.541 5.841 7.453 10.215 12.924
4 0.74% 1533 2132 2.776 3.747 4.604 5.598 7.173 8.610

5 0.727 1476 2015 2571 3.365 4.032 4.773 5.893 6.869
6 0.718 1440 1.943 2.447 3.143 3.707 4317 5.208 5.959

7 0711 1415 1.895 2.365 2.998 3.499 4.029 4.785 5.408

8 0.706 1397 1860 2.306 2.896 3.355 3.833 4501 5.041

9 0.703 1.383 1.833 2.262 2.821 3.260 3.690 4.297 4.781
10 0700 1372 1.812 2.228 2,764 3.169 3.581 4.144 4.587
11 0697 1363 1796 2201 2.718 3.106 3.497 4.025 4.437
12 0695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4318
13 0694 1350 1.77% 2.160 2.650 3.012 3.372 3.852 . 4221 -
14 0692 1345 1.761 2.145 - 2,624 2.977 3.326 3.787 4140
15 0.691 1.341 1753 2131 2.602 2.947 3.286 3.733 4.073
16 0690 1.337 1.746 2120 2.583 2.92% 3.252 3.686 4.015
17 0689 1.333 1.740 2110 2.567 2.898 3.222 3.646 3.965
18 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 0688 1.328 1.729 2.093 2539 2.861 3.174 3.579 3.883
20 0687 1325 1.725 2.086 2528 2.845 3.153 3.652 3.850
21 0686 1.323 1.721 2.080 2518 2.831 3.135 3.527 3.819
22 0686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 0685 1319 1714 2.069 2500 2.807 3.104 3.485 3.768
24 0685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 0684 1316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 0684 1315 1706 2.056 2.479 2.779 3.067 3.435 3.707
27 0684 1314 1703 2.052 2473 . 2771, 3.057 3.421 3.690
28 0.683 1313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 0.683 1310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
31 0.682 1309 1696 2.040 2.453 2.744 3.022 3.375 3.633
32 0682 1.309 1.694 2.037 2.449 2.738 3.015 3.365 3.622
33 0.682 1308 1.692 2.035 2.445 2,733 3.008 3.356 3.611
34 0682 1.307 1.691 2.032 2.441 2.728 3.002 3.348 3.601
35 0.682 1.306 1.690 2.030 2.438 2.724 2.996 3.340 3.591
36 0.681 1.306 1.688 2.028 2434 2.719 2.990 3.333 3.5682
37 0.681 1305 1.687 2.026 2431 2.715 2.985 3.326 3574
38 0.681 1304 1686 2024 2.429 2.712 2.980 3.319 3.566
39 0.681 1304 1.685 2.023 2.426 2.708 2.976 3.313 3.558
40 0.681 1303 1.684 2.021 2.423 2,704 2.971 3.307 3.551
42 0.680 1.302 1.682 2.018 2418 2.698 2.963 3.296 3.538
44 0.680 1.301 1.680 2.015 2414 2.692 2.956 3.286 3.526
46 0.680 1.300 1.679 2.013 2410 2.949 3277 3.515

2.687
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Table 4-1
Critical Values of t (Two-Tailed) (continued)

CHAPTER 4

Probability of greater value, P

v 050 020 0.0 0.05 0.02 0.01 0.005 0.002 0.001

48 0680 1.299 1677 2011 2407 2682 2943 . 3269 . 3.505
50 0.679 1299 1676 2.009 2403 2678 2.937 3.261 3.496
52 0.679 1.298 1.675 2007 2400 2674 2.932 3.255 3.488
54 0.679 1297 1674 2005 2397 2.670 2.927 3.248  3.480
56 0.679 1297 1673 2.003 2395 2667 2923 3.242 3.473
58 0.679 1296 1.672 2002 2.392 2.663 2918 3.237 3.466
60 0.679 1.296 1.671 2000 2390 2660 2915 3.232 3.460
62 0.678 1.295 1670 1999 2388  2.657 291 3.227 3.454
64 0678 1.295 1669 1998 2386  2.655 2.908 3.223 3.449
66 0.678 1.295 1668 1997 2384  2.652 2.904 3.218 3.444
68 0.678 1.294 1668 1995 2382  2.650 2.902 3.214 3.439
70 0.678 1.294 1.667 1994 2381 2.648 2.899 3.211 3.435
72 0678 1.293 1666 1993 2379  2.646 2.896 3.207 3431

74 0678 .1.293 1666 1993 2378 2.644 2.894 3.204 3.427
76 0.678 1293 1665 1992 2376 2642 2.891 3.201 3.423
78 0.678 1.292 1665 1.991 2375  2.640 2.889 3.198 3.420
80 0.678 1.292 1664 1990 2374 2.639 2.887 3.195 3.416
90 0.677 1291 1662 1987 2368 2.632 2.878 3.183 3.402
100 0.677 1.290 1.660 1984 2364  2.626 2.87 3.174 3.380
120 0677 1289 1.668 1980 2358 2617 .2.860 3.160 3373
140 0676 1.288 1656 1977 23563 2.6 2.852 3.149 3.361

160 0.676 1.287 - 1.654 1975 2350  2.607 2.846 3.142 3.352
180 0.676 1.286 1.653 1973 2347 2.603 2.842 3.136 3.345
200 0676 1.286 1.653 1.972 2345  2.601 2.839 3.131 3.340
o (.6745 1.2816 1.6449 1.9600 2.3263 25758 28070 3.0802  3.2905

and

Source: Adapted from J. H. Zar, Biostatistical Analysis (2 ed.), Prentice-Hall,
Englewood Cliffs, N.J., 1984, pp. 484-485, table B.3. Used by permission.

669 — 73.2

Hh= =
V(178.1/61) + (178.1/61)

— 2.607

with v = 2(n — 1) = 2(61 — 1) = 120 degrees of freedom. Table 4-1
shows that the magnitude to ¢ should exceed 2.358 only 2 percent of
the time when the two samples are drawn from a single population, as
they would be if halothane and morphine both affected patients’
blood pressure similarly. Since the value of ¢ associated with the
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observations exceeds this value, we conclude that halothane is associ-
ated with a lower lowest mean arterial pressure than morphine, on the
average.

Conahan and colleagues also measured the amount of blood being
pumped by the heart in some of the patients they anesthetized to obtain
another measure' of how the two anesthetic agents affected cardiac
function in people having heart-valve replacement surgery. To normal-
ize the measurements to account for the fact that patients are different
sizes and hence have different-sized hearts and blood flows, they com-
puted the cardiac index, which is defined as the rate at which the heart
pumps blood (the cardiac output) divided by body surface area. Table
4-2 reproduces some of their results. Morphine seems to produce lower
cardiac indexes than halothane, but is this difference large enough to re-
ject the hypothesis that the difference reflects random sampling rather
than an actual physiological difference?

From the information in Table 4-2, the pooled estimate of the vari-
ance is

= (.89

, 9 — 1)(1.05%) + (16 — 1)(88%)
= 9+ 16 -2 -

Table 4-2 Comparison of Anesthetic Effects 6n the
Cardiovascular system

Halothane Morphine
{n=9) {n=16)
Meanv SD Mean SD
Best cardiac index, induction 2.08 1.05 1.75 .88
to bypass, L/m? - min :
Mean arterial blood pressure 76.8. 13.8 - 914 19.6
at time of best cardiac
index,.mmHg :
Total peripheral resistance 2210 1200 2830 1130

associated with best
cardiac index, dyn - s/cm®

Source: Adapted from T. J. Conahan et al., A Prospective Random Com-
parison of Halothane and Morphine for Open-Heart Anesthesia,” Anesthesiology,
38:528-535, 1973 k
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and so

. 208-175
V(.89/9) + (.89/16)

which does not exceed the 5 percent critical value of 2.069 for
V=gt e — 2 =9+ 16 — 2 = 23 degrees of freedom. Hence, we
do not have strong enough evidence to assert that there is really a dif-
ference in cardiac index with the two anesthetics. Does this prove that
there really was not a difference?

THE t TEST IS AN ANALYSIS OF VARIANCE*

The ¢ test and analysis of variance we developed in Chapter 3 are really
two different ways of doing the same thing. Since few people recognize
this, we will prove that when comparing the means of two groups,
F = t2. In other words, the  test is simply a special case of analysis of
variance applied to two groups. )

We begin with two samples, each of size n, with means and stan-
dard deviations X, and X, and s, and s, respectively.

To form the F ratio used in analysis of variance; we first estimate
the population variance as the average of the variances computed for
each group '

52, = 2(s? + 5D

wit

Next, we estimate the population variance from the safnple means
by computing the standard deviation of the sample means with

()_(1 - -)_()2 + (322 - X)z
ST =
X 2-1
Therefore
s2=X, - X+ X, - X)*

*This section represents the only mathematical proof in this book and as such is a
bit more technical than everything else. The reader can skip this section with no loss of
continuity.
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in which X is the mean of the two sample means
T =, + %) |
Eliminate X from the equation for s to obtain
53 = [X, — X, + X,)P + [X, — X, + X,)P
= (2X, — 2 X, ) + (V2X, — '2X,)?

Since the square of a number is always positive, (a — b)> = (b — a)?
and the equation above becomes

53 = (12X, — 12X, + (12X, — 2X, )
= 202X, — X,))* = (X, — X2)2

Therefore, the estimate of the populatlon vanance from between the
groups is

st = ns% = (n/2) (X, — X,)?

Finally, F is the ratio of these two estimates of the population vari-

ance

2

S

F = bet _
52

/X, - %) X - %)
Va(st + s3) (slln) + (s5/n)

2

wit

_ [ X - Xz ]2
V(si/n) + (s3/n)

_ The quantity in the brackets is 7, hence

F=1¢?

The degrees of freedom for the numerator of F equals the num-
ber of groups minus 1, that is, 2 — 1 = 1 for all comparisons of two
groups. The degrees of freedom for the denominator equals the num-
ber of groups times 1 less than the sample size of each group,
2(n — 1), which is the same as the degrees of freedom associated
with the ¢ test.
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In sum, the ¢ test and analysis of variance are just two different
ways of looking at the same test for two groups. Of course, if there are
more than two groups, one cannot use the #-test form of analysis of vari-
ance but must use the more general form we developed in Chapter 3.

CCMMON ERRORS IN THE USE OF THE t TEST
AND HOW TO COMPENSATE FOR THEM

The ¢ test is used to compute the probability of being wrong, the P
value, when asserting that the mean values of fwo treatment groups are
different, when, in fact, they were drawn from the same population. We
have already seen (Fig. 4-1) that it is also used widely but erroneously
to test for differences between more than two groups by comparing all
possnble pairs of means with 7 tests.

For example, suppose an investigator measured blood sugar under
control conditions, in the presence of drug A, and in the presence of
drug B. It is common to perform three ¢ tests on these data: one to
compare control versus drug A, one to compare control versus drug B,
and one to compare drug A versus drug B. This practice is incorrect
‘because the true probability of erroneously concluding that the drug
affected blood sugar is actually higher than the nominal level, say 5
percent, used when looking up the “big” cutoff value of the ¢ statistic
in a table.

To understand why, recon51der the experiment described in the last
paragraph. Suppose that if the value of the ¢ statistic computed in one
of the three comparisons just described is in the most extreme 35 per-
cent of the values that would occur if the drugs really had no effect, we
will reject that assumption and assert that the drugs changed blood
sugar. We will be satisfied if P < .05; in other words, in the long run
we are willing to accept the fact that 1 statement in 20 will be wrong.
Therefore, when we test control versus drug A, we can ‘expect erro-
neously to assert a difference 5 percent of the time. Similarly, when
testing control versus drug B, we expect erroneously to assert a differ-
ence 5 percent of the timé, and when testing drug A versus drug B, we
expect erroneously to assert a difference 5 percent of the time. There-
fore, when considering the three tesis together, we expect to conclude
that at least one pair of groups differs about 5 percent + 5 percent + 5
percent = 15 percent of the time, even if in reality the drugs did not




THE SPECIAL CASE OF TWO GROUPS: THE t TEST 87

affect blood sugar (P actually equals 14 percent). If there are not too
many comparisons, simply adding the P values obtained in multiple
tests produces a realistic and conservative estimate of the true P value
for the set of comparisons.

- In the example above, there were three ¢ tests, so the effective P
value was about 3(.05) = .15, or 15 percent. When comparing four
groups, there are six possible 7 tests (1 versus 2, 1 versus 3, 1 versus
4, 2 versus 3, 2 versus 4, 3 versus 4); so if the author concludes that
there is a difference and reports P < .05, the effective P value is
about 6(.05) = .30; there is about a 30 percent chance of at least one
incorrect statement if the author concludes that the treatments had an
effect! '

In Chapter 2, we discussed random samples of Martians to illus-
trate the fact that different samples from the same population yield dif-
ferent estimates of the population mean and standard deviation. Figure
2-6 showed three such samples of the heights of Martians, all drawn
from a single population. Suppose we chose to study how these Mar-
tians respond to human hormones. We draw three samples at random,
give one group a placebo, one group testosterone, and one group estro-
gen. Suppose that these hormones have no effect on the Martians’
heights. Thus, the three groups shown in Fig. 2-6 represent three sam-
ples drawn at random from the same population.

Figure 4-6 shows how these data would probably appear in a typi-
cal medical journal. The large vertical bars denote the value of the
mean responses, and the small vertical bars denote 1 standard error of
the mean above or below the sample means. Showing 1 standard devia-
tion would be the appropriate way to describe variability in the sam-
ples. Most authors would analyze these data by performing three ¢ tests:
placebo against testosterone, placebo against estrogen, and testosterone
against estrogen. These three tests yield ¢ values of 2.39, 0.93, and 1.34,
respectively. Since each test is based on 2 samples of 10 Martians each,
there are 2(10 — 1) = 18 degrees of freedom. From Table 4-1, the
critical value of ¢ with a 5 percent chance of erroneously concluding
that a difference exists is 2.101. Thus, the author would conclude that
testosterone produced shorter Martians than placebo, whereas estrogen
did not differ significantly from placebo, and that the two hormones did
not produce significantly different results. ' ‘

Think about this result for a moment. What is wrong with it?
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:{ Mean + SEM
45+

40

Height, cm

251

Placebo Testosterone Estrogen

Figure 4-6 Results of a study of human hormones on Martians as it would be
commonly presented in the medical literature. Each large bar has a height equal
to the mean of the group; the small vertical bars indicate 1 standard error of the
mean on either side of the mean (not 1 standard deviation):

If testosterone produced results not detectably different from
those of estrogen and estrogen produced results not detectably differ-
ent from those of placebo, how can testosterone have produced re-
sults different from placebo? Far from alerting medical researchers
that there is something wrong with their analysis, this illogical result
usually leads to a very creatively written “Discussion” section in

their paper.
An analysis of variance of these data yields F = 2.74 [with numer-
ator degrees of freedom =m — 1 =3 — 1 = 2 and denominator degrees

of freedom m(n — 1) = 3(10 — 1) = 27], which is below the critical
value of 3.35 we have decided is required to assert that the data are
incompatible with the hypothesis that all three treatments acted as
placebos.

Of course, pérforming the analysis of variance does not ensure'that
we will not reach a conclusion that is actually wrong; but it will make it
less likely.
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We end our discussion of common errors in the use of the  test
with three rules of thumb. '

o The t test can be used to test the hypothesis that two group
, means are not different.
»  When the experimental design involves multiple groups, analy-
sis of variance should be used.
* When t tests are used to test for differences between multiple
groups, you can estimate the true P value by multiplying the
reported P value times the number of possible t tests.

HOW TO USE t TESTS TO ISOLATE
DIFFERENCES BETWEEN GROUPS
IN ANALYSIS OF VARIANCE

The last section demonstrated that when presented with data from ex-
periments with more than two groups of subjects, one must do an
analysis of variance to determine how inconsistent the observations are
with the hypothesis that all the treatments had the same effect. Doing
pairwise comparisons with 7 tests increases the chances of erroneously
reporting an effect above the nominal value, say 5 percent, used to de-
termine the value of a “big” ¢. The analysis of variance, however, only
tests the global hypothesis that all the samples were drawn from a sin-
gle population. In particular, it does not provide any information on
which sample or samples differed from the others. '

There are a variety of methods, called multiple-comparison pro-
cedures, that can be used to provide information on this point. All are
essentially based on the ¢ test but include appropriate corrections for
the fact that we are comparing more than one pair of means. We will
develop several approaches, beginning with the Bonferroni t test. The
general approach we take is first to perform an analysis of variance
to see whether anyfhing appears different, then use a multiple-com-
parison procedure to isolate the treatment or treatments producing

Tthe differem results.”

*Some _statistici i this_approach_is -too ervative and that one
should skip the analysis of variance and proceed directly to the multiple comparisons of
interest. For an introductory treatment from this perspective, see Byron W. Brown, Jr.,
and Myles Hollander, Statistics: A Biomedical Introduction, Wiley, New York, 1977,
chap. 10, “Analysis of k-Sample Problems.” )
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The Bonferroni t Test -

In the last section, we saw that if one analyzes a set of data with three ¢

tests, each using the 5 percent critical value for concluding that there is

a difference, there is about a 3(5) = 15 percent chance of finding it.

This result is a special case of a formula called the Bonferroni inequal-

ity, which states that if k statistical tests are performed with the cutoff

value for the test statistics, for example, ¢ or F, at the a level, the like-

lihood of observing a value of the test statistic exceeding the cutoff -
value at least once when the treatments did not produce an effect is no

greater than k times «. Mathematically, the Bonferronl inequality

states

ar < ka

where ay is the true probability of erroneously concluding a difference
exists at least once. oy is the error rate we want to control. From the
equation above,

82
l<a
k

Thus, if we do each of the ¢ tests using the critical value of ¢ corre-
sponding to ay/k, the error rate for all the comparisons taken as a
group will be at most . For example, if we wish to do three com-
parisons with ¢ tests while keeping the probability of making at least
one mistake to less than 5 percent, we use the ¢ value corresponding
to .05/3 = 1.6 percent for each of the individual comparisons. This
procedure is called the Bonferroni ¢ test because it is based on the
Bonferroni inequality.

This procedure works reasonably well when there are only a few
groups to compare, but as the number of comparisons k increases above
8 to 10, the value of ¢ requlred to conclude that a dlfference ex1sts be-
overconservative. Other multiple-comparison procedures, such as the
Holm test (discussed in the next section), are less conservative. All,
however, are similar to the Bonferroni 7 test in that they are essentially
modifications of the ¢ test to account for the fact that we are making
multiple comparisons. :
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One way to make the Bonferroni 1 test less conservative is to use the
estimate of the population variance computed from within the groups in
the analysis of variance. Specifically, recall that we defined ¢ as

DA X2
\/(szlnl) + (s2/n2)

where 52 is an estimate of the population variance. We will replace this
estimate with the population variance estimated from within the groups

as part of the analysns of variance, s2;,, to obtain

X, - X,
v(swu/nl) + (swn/nZ)

When the sample sizes are equal, the equation becomes

V2s /n

wit

The degrees of freedom for this test are the same'as the denominator
degrees of freedom for the analysis of variance and will be higher than
for a simple ¢ test based on the two samples being compared.* Since the
critical value of ¢ decreases as the degrees of freedom increase, it will
be possible to detect a dlfference with a glven confidence with smaller
absolute differences in the means.

More on Menstruation and Jogging

In Chapter 3 we analyzed the data in Fig. 3-9 and concluded that they
were inconsistent with the hypothesis that a control group, a group of
joggers, and a group of runners had on the average the same number of
menstrual periods per year. At the time, however, we were unable to
isolate where the difference came from. Now we can use our Bonfer-
roni £ test to compare the three groups pairwise.

Recall that our best estimate of the within-groups variance s2;, is
3.95 (menses/year)?. There are m = 3 samples, each containing n = 26
women. Therefore, there are m(n— 1) =3(26 — 1) =75 degrees of

*The number of degrees of freedom is the same if there are only two groups.
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freedom associated with the estimate of the within-groups variance.
[Note that if we just used the pooled variance from the two samples,
there would ‘be only 2(n — 1) =2(26 — 1) = 50 degrees of freedom.]
Therefore, we can compare the three different groups by computing
three values of . To compare control with the joggers, we compute

. —X 1 — 11,
t=X’°g con . 101 S — 254
V2st /n  V2(3.95)/26

wit:

To compare the control group with the runners, we compute

- X d—11.
¢ = Xon = Xeon _ 9.1 S~ 435
V2s2./n V2(3.95)/26

To cdmpare the joggers with the runners, we compute

Xy — Xow _ 101 —9.1

t = jog

Vasiin  V2(3.95)/26

There are three comparisons, so to have an overall error rate of less than
5 percent we compare each of these values of ¢ with the critical value of
t associated with the .05/3 = 1.6 percent level and 75 degrees of free-
dom. Interpolating™ in Table 4-1 shows this value to be about 2.45.

Thus, we have sufficient evidence to conclude that both jogging and
ruhning decrease the frequency of menstruation, but we do not have evi-
dence that running decreases menstruation any more than simply jogging.

A Better Approach to Multiple Comparisons:
‘The Holm ¢ Test

There have been several refinements of the Bonferroni ¢ test de-
signed to maintain the computational simplicity while avoiding the low .
power that the Bonferroni correction brings; beginning with the Holm ¢
test.” The Holm test is nearly as easy to compute as the Bonferroni ¢
test, but is more powerful.* The Holm test is a so-called sequentially

*Appendix A describes how to interpolate.

1S. Holm, “A Simple Sequentially Rejective Multiple Test Procedure,” Scand.
J. Stat., 6:65-70, 1979.

1J. Ludbrook, “Multiple Comparison Procedures Updated,” Clin. Exp. Pharmacol.
Physiol., 25:1032—-1037 1998; M. Aickin and H. Gensler, “Adjusting for Multiple Test-
ing When Reporting Research Results: The Bonferroni vs. Holm Methods” Am. J.
Public Health, 86:726-728, 1996; B. Levin, “Annotation: On the Holm, Simes, and
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rejective, or step-down, procedure because it applies an accept/reject
criterion to a set of ordered null hypotheses, starting with the smallest P
value, and proceeding until it fails to reject a null hypothesis.

To perform the Holm ¢ test, we compute the family of pairwise
comparisons of interest (with ¢ test using the pooled variance estimate
from the analysis of variance as we did with the Bonferroni ¢ test) and
determine the unadjusted P value for each test in the family. We then
compare these P values (or the corresponding ¢ values) to critical values
that have been adjusted to allow for the fact that we are doing multiple
comparisons. In contrast to the Bonferroni correction, however, we take
into account how many tests we have already done and become less
conservative with each subsequent comparison. We begin with a correc-
tion just as conservative as the Bonferroni correction, then take advan-
tage of the conservatism of the earlier tests and become less cautious
with each subsequent comparison. ‘

Suppose we wish to make k pairwise compansons * Order these k
uncorrected P values from smallest to largest, with the smallest uncor-
rected P value considered first in the sequential step-down test proce-
dure. P, is the smallest P value in the sequence and P, is the largest. For
the f hypothesis test in this ordered sequence, Holm’s original test
applies the Bonferroni criterion in a step-down manner that depends on
k and j, beginning with j = 1, and proceeding until we fail to reject the
null hypothesis or run out of comparisons to do. Specifically, the uncor-
rected P value for the jth test is compared to o; = az/(k — j + 1). For
the first comparison, j = 1, and the uncorrected P value needs to be
smaller than «; = ap/(k — 1 + 1) = ar/k, the same as the Bonferroni

_correction. If this smallest observed P value is less than o, we reject

that null hypothesis and then compare the next smallest uncorrected P
value with o, = az/(k — 2 + 1) = apAk — 1), which is a larger cutoff
than we would obtain just using the Bonferroni correction. Because this
critical value is larger, the test is less conservative and has higher power.

In the example of the relationship between menstruation and jog-
ging that we have been studying, the ¢ values for control versus joggers,

Hochberg Multiple Test Procedures,” Am. J. Public Health, 86:628-629, 1996; B. W.
Brown and K. Russel, “Methods for Correcting for Multiple Testing: Operating Charac-
teristics,” Stat. Med. 16:2511-2528, 1997. T. Morikawa, A. Terao, and M. Iwasaki,
“Power Evaluation of Various Modified Bonferroni Procedures by a Monte Carlo Study,”
J. Biopharm. Stat., 6:343-359, 1996.

*Like the Bonferroni correction, the Holm procedure can be apphed to any family
of hypothesis tests, not just multiple pairwise comparisons.
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control versus runners, and joggers versus runners were —2.54, —4.35,
and 1.81, respectively, each with 75 degrees of freedom. The corre-
sponding uncorrected P values are .013, .001, and .074. The ordered P
values, from smallest to largest are:

.001 .013 074
control vs. runners  control vs, joggers joggers vs. runners
i=1 j=2 j=3

We have k = 3 null hypothesis tests of interest, which led to
_ these three P values. The rejection criterion for the test of the first of
these ordered hypotheses (j=1) is P=<a; =005/3—-1+1) =
0.05/3 = .0167, which is identical to the Bonferroni critical level we ap-
plied previously to each of the members of this family of three tests. The
computed P, .001, is less than this critical o, and so we reject the null
hypothesis that there is no difference between runners and controls.
Because the null hypothesis was rejected at this step, we proceed to the
next step, j = 2, using as a rejection criterion for this second test
P=qa,=005/(3 -2+ 1) =0.05/2 = .025. Note that this is a less
restrictive criterion than in the traditional Bonferroni procedure we
applied previously. The computed P, .013, is less than this critical value,
and so we reject the null hypothesis that there is no difference in cortisol
level between joggers and controls. Because the null hypothesis was
rejected at this step, we proceed to the next and, in this example, final
step, j=3, using as a rejection criterion for this third test
P=03=0053 —3+1)=0.05/1 = .05. Note that this is further
less restrictive than in the traditional Bonferroni procedure we applied
previously, and is, in fact, equal to the criterion for an unadjusted ¢ test.
The computed P, .074, is greater than this critical value, and so we do
not reject the null hypothesis that there is no difference in cortisol level
between joggers and runners.
~ An alternative, and equivalent, approach is to compute the critical
values of ¢ corresponding to 0.0167, 0.025, and 0.05, and compare the
observed values of the ¢ test statistic for these comparisons with these
critical ¢ values. For 75 degrees of freedom, the corresponding critical
values of the ¢ test statistic are 2.45, 2.29, and 1.99. Therefore, like the
Bonferroni ¢ test, the Holm test requires the test statistic to exceed 2.45
for the comparison showing the largest difference (smallest P value),
but this value drops to 2.29 for the second of the ordered comparisons,
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and finally to 1.99 for the last of the three ordered comparisons (largest
P value, corresponding to smallest mean difference).

In this example, we reached the same conclusion that we did
when using the regular, single-step Bonferroni, procedure. However,
you can see from the progressively less conservative « at each step in
the sequence that this collection of tests will have more power than
the traditional single-step Bonferroni procedure.” Because of the
improved power of sequential stepping versions of the traditional
Bonferroni tests while controlling the Type I error for the family of
comparisons at the desired level, we recommend the Holm test over
the Bonferroni test. '

OTHER APP_ROACHES TO MULTIPLE COMPARISON
TESTING: THE STUDENT-NEWMAN-KEULS TEST#

As noted in the previous section, the Bonferroni ¢ test is overly conserva-
tive when there are more than a few group means to compare. This

*There are several other sequential tests, all of which operate in this manner, but ap-
ply different criteria. Some of these other tests are computationally more difficult, and
less well understood, than Holm’s test. Some, like Hochberg’s test (Y. Hochberg, “A
Sharper Bonferroni Procedure for Multiple ‘Tests of Significance,” Biometrika
75:800-802, 1988), are step-up rather than step-down procedures in that they use a re-
verse stepping logic, starting with the kth (i.e., largest) P value in the ordered list of k P
values, and proceeding until the first rejection of a null hypothesis, after which no more
testing is done and all smaller P values are considered significant. Hochberg’s test is ex-
actly like the Holm test except that it applies the sequentially stepping Bonferroni crite-
rion in this reverse, step-up order. Although Hochberg’s test is claimed to be slightly more
powerful than Holm’s test, it is less well studied and so for the time being it is probably
best to use one of the Holm tests, it is less well studied and so for the time being it is
probably best to use one of the Holm tests (B. Levin, “Annotation: On the Holm, Simes,
and Hochberg Multiple Test Procedures,” Am. J. Public Health, 86:628 629, 1996.

tAs discussed earlier, the Bonferroni inequality, which forms the basis for Bonfer-
roni corrections in multiple companson procedures, is that a; < k a. As noted when we
introduced the topic of multiple comparisons, the Bonferroni inequality is more conserva-
tive compared with the exact risk of at least one false positive conclusion, which is
ar =1 — (1 — o)k Sidak (“Rectangular Confidence Regions for the Means of Multivari-
ate Normal Distributions,” J. Am. Stat. Assoc., 62: 626-633, 1967) proposed adjusting
the P values using this exact probability function rather than the inexact Bonferroni in-
equality. Likewise, the Holm procedure can be based on this more precise formula for the
family error rate. This so-called Holm—Sidak procedure, works like the Holm test, except
that the criterion is 1 — (1 — ap)® ~J + D for the jth hypothesis test in the ordered se-
quence of k tests, rather than ar/(k — j + 1).

+This material is 1mportant for people who are using this book as a guide for analysis
of their data; it can be skipped in a course on introductory biostatistics without interfering

continued
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Table 4-3
Critical Values of g

CHAPTER 4

ay = 0.05

vg - p=2

3

4

5

6

7

8

9

10

117.97

2 6.085
3 4.501
4 3.927
5 3.635
6 3.461
7 3344
8 3.261
9 3.199
10 3.151

11 3113
12 3.082
13 3.055
14 3.033
15 3.014

16 2.998
17 2.984
18 2.971
19 '2.960
20 2.950

24 2919
30 2888
40 2.858
60 2.829

120 2.800.

o 2772

26.98 32.82 37.08 4041 43.12 4540 4736 4907

8.331
5.910
5.040
4.602

4.339
4.165
4.041
3.949
3.877

3.820
3.773
3.736
3.702
3.674

3.649
3.628

3.609 .,

3.5693
3.578

3.632
3.486
3.442
3.399
3.356
3.314

9.798
6.825
5.757
5.218

4.896
4.681
4.529
4.415
4.327

4.256
4.199
4.151
411
4.076

4.046
4.020
3.997
3.977
3.958

3.901
3.845
3.791

13.737

3.685
3.633

10.88
7.502
6.287
5.673

5.306
5.060
4.886
4.756
4.654

4574
4.508

- 4.453

4.407
4.367

4.333
4.303
4.277
4.253
4.232

4.166 -

4.102
4.039
3.977
3.917
3.858

11.74
8.037
6.707
6.033

5.628
5.359
5.167
5.024
4.912

4.823
4.751
4.690
4.639
4595

4557
4524
4.495
4.469
4.445

4.373
4.302
4.232
4.163
4.096
4.030

12.44
8.478
7.053
6.330

5.895
5.606
5.399
5.244
5.124

5.028

4.950:

4.885
4.829
4.782

4.741
4705
4.673
4.645
4.620

4.541
4.464
4.389
4314
4.241
4.170

13.03
8.853
7.347
6.582

6.122
5.815
5.697
5.432
5.305

5.202
5119
5.049
4.990
4.940

4.897
4.858
4.824
4.794
4.768

4.684
4.602
4.521
4.441
4.363
4.286

13.54
9.177
7.602
6.802

6.319
5.998
5.767
5.595
5.461

5.363
5.265
5.192
5.131
5.077

5.031
4.991
4.956
4.924
4.896

4.807
4.720
4.635
4.550
4.468
4.387

13.99
9.462
7.826

'6.995

6.493
6.158
5.918
5.739
5.599

5.487
5.395
5.318
5.254
5.198

5.150
5.108
5.071
5.038
5.008

4.915
4.824
4735
4.646
4560
4474

section presents the Student-Newman-Keuls (SNK) test. The SNK test
statistic ¢ is constructed similarly to the ¢ test statistic, but the sampling
distribution used to determine the critical values reflects a more sophisti-
cated mathematical model of the multiple-comparison problem than does
the simple Bonferroni inequality. This more sophisticated model gives

(continued ) with the presentation of the rest of the material in this book. For a complete dis-
cussion of these (and other) multiple comparison procedures, see S. E. Maxwell and H. D.
Delaney, Designing Experiments and Analyzing Data: A Model Comparison Perspective,
Wadsworth, Belmont CA, 1990, chapter 5. “Testing Several Contrasts: The Multiple Com-
parison Problem.”
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Table 4-3 )
Critical Values of g (Continued)
ar = 0.01
vy p=2 3 4 5 6 - 7 8 g 10

190.03 1350 1643 1856 2022 2158 2272 2370 2456
21404 19.02 2229 2472 2663 2820 2953 30.68 31.69
3 8261 1062 1217 13.33 1424 1500 1564 1620 16.69
4 6512 8120 9.173 9958 1058 11.10 1155 1193 12.27
5 5702 6976 7804 8421 8913 9321 9669 9972 10.24
6
7
8

5243 6331 7.033 7556 7973 8318 8613 8869 9.097

4949 5919 6543 '7.005 7.373 7679 7.939 8.166 8.368

4746 5635 6.204 6.626 6.960 7.237 7.474 7681 7.863
9 4596 5428 5957 6348 6.658 6.915 7.134 7.325 7.495 .
10 4482 5270 5769 6.136 6.428 6.663 6.875 7.055 7.213

11 4392 5146 5.621 5970 6.247 6476 6.672 6.842 6.992
12 4320 5046 5502 5836 6.101 6321 6507 6670 6814
13 4260 49684 5404 5727 5981 6.192 6372 6528 6.667
14 4210 4895 5322 5634 58381 608 6258 6409 6543
15 4.168 4.836 5.2562 5556 5796 5994 6.162 6309 6.439

16 4131 4786 5192 5489 5722 5915 6.079 6222 6.349
17 4.099 4742 5140 5430 5.659 5.847 6.007 6.147 6.270
18 4.071 4703 5094 5379 5603 5788 5944 6.081 6.201
19 4046 4670 5054 5334 5554 5735 5.889 6.022 6.141
20 4.024 4639 5018 5294 5510 5688 5839 5970 6.087

24 3956 4546 4907 5168 5374 5542 5685 5809 5.919
30 3889 4455 4799 5048 5.242 5401 5536 5653 5.756
40 3.825 4367 4696 4931 5114 5265 5.392 5502 5559
60 3762 4282 4595 4818 4.991 5133 5253 5356 5.447
120 3702 4200 4.497 4709 4872 5005 5118 5214 5299
o 3.643 4.120 4403 4.603 4.757 4882 4987 5078 5.157

Source: H. L. Harter, Order Statistics and Their Use in Testing and Estimation,

Vol. |: Tests Based on Range and Studentized Range of Samples from a Normal
Population, U.S. Government Printing Office, Washington, D.C., 1970.

rise to a more realistic estimate of the total true probability of erroneously
concluding a difference exists, ar, than does the Bonferroni ¢ test. -

The first step in the analysis is to complete an analysis of variance
on all the data to test the global hypothesis that all the samples were
drawn from a single population. If this test yields a significant value of
F, arrange all the means in irercasing order and compute the SNK test

dzsaﬂqbfkj '
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statistic g according to

YA — )_(B

s%vit (__1__ + i)

2 \n, ny
where X, and X, are the two means being compared, s%; is the
variance within the treatment groups estimated from the analysis of
variance, and n, and n are the sample sizes of the two samples being
compared. :

This value of g is then compared with the table of critical values
(Table 4-3). This critical value depends on oy, the total risk of er-
roneously asserting a difference for all comparisons combined, vy, the .
denominator degrees of freedom from the analysis of variance, and a
parameter p, which is the number of means being tested. For-example,
when comparing the largest and smallest of four means, p = 4; when
comparing the second smallest and smallest means, p = 2.

The conclusions reached by multiple-comparisons testing depend
on the order that the pairwise comparisons are made. The proper proce-
dure is to compare first the largest mean with the smallest, then the
largest with the second smallest, and so on, until the largest has been
compared with the second largest. Next, compare the second largest
with the smallest, the second largest with the next smallest, and so
forth. For example, after ranking four means in ascending order, the
sequence of comparisons should be: 4 versus 1, 4 versus 2, 4 versus 3,
3 versus 1, 3 versus 2, 2 versus 1. -

Another important procedural rule is that if no significant differ-
ence exists between two means, then conclude that no difference exists
between any means enclosed by the two without testing for them. Thus,
in the preceding example, if we failed to find a significant difference
between means 3 and 1, we would not test for a difference between
‘means 3 and 2 or means 2 and 1.

q:

Still More on Menstruation and Jogging

To illustrate the procedure, we once again analyze the data in Fig. 3-9,
which presents the number of menses per year in women runners, jog-
gers, and sedentary controls. The women in the control group had an
average of 11.5 menses per year, the joggers had an average of 10.1
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menses per year, and the runners had an average of 9.1 menses per year.
We begin by ordering these means in descending order (which is how
they happen to be listed). Next, we compute the change in means be-
tween the largest and smallest (control. versus runners), the largest and
the next smallest (control versus joggers), and the second largest and
the smallest (joggers versus runners). Finally, we use the estimate
of the variance from within the groups in the analysis of variance,
%, = 3.95 (menses/year)® with v, =75 degrees of freedom, and the
fact that each test group contained 26 women to complete the computa-
tion of each value of q.
To compare the controls with the runners, we compute

X -% 115 - 9.1
con —_ “run 59 = 6.157

17773
Seaf 1 1 3.95 1
_ L — + —
2 \ng, Mon 2 26 26

This comparison spans three means, so p-= 3. From Table 4-3, the
critical value of g for oy = .05, v; = 75 (from the analysis of variance),
and p = 3 is 3.385. Since the value of g associated with this compari-
son, 0.157, exceeds this critical value we conclude that there is a sig-
mﬁcant difference between the controls and the runners. Since this re-
sult i is significant, we go on to the next' comparison.

To compare the controls with the joggers, we compute

X0 — X, 1.5 —'10.1
= 3592

q =
@ 1 N L 3.95 1,1 1
, 2 \Negn  Mjog 2 26 26

For this comparison, oy and v, are the same as before, but p = 2. From
Table 4-3, the critical value of q is 2.822. The value of 3.592 associated
with this comparison also exceeds the critical value, so we conclude
that controls are also significantly different from joggers.

To compare the joggers with the runners, we compute

Xeon = Xw  __ 101-91

q=
s (L, 1 395(1 , 1
2 \ngy N 2 \26 26
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The value of g associated with this comparison, 2.566, is less than the
critical value of 2.822 required to assert that there is a difference be-
tween joggers and runners. (The values of v, and p are the same as be-
fore, so the critical value of ¢ is t00.)

Tukey Test

The Tukey test is computed identically to the SNK test; the only
difference is the critical value used to test whether a given difference is
significant. (In fact, the SNK test is actually derived from the Tukey
test.) In the SNK test, the value of the parameter p used to determine the
critical value of g is the number of means spanned in the comparison be-
ing considered. As a result, completing a family of comparisons with the
SNK test involves changing values of the critical value of g, depending
on which comparison is being made. In_the Tukey test, the parameter p
is set to m, the number of groups in the study for all comparisons. -

Had we used the Tukey test for multiple comparisons in the exam-
ple of the effect of jogging on menstruation discussed previously, we
would have used m= 3 for p, and so compared the observed values of ¢
with a critical value of 3.385 for all the comparisons. Despite the fact
that the critical value for the last two comparisons in the example
would be larger than the critical values used in the SNK test, we would
draw the same conclusions from the Tukey test as the SNK test; that is,
the joggers and runners are not significantly different from each other,
and both are significantly different from the control group.

The Tukey and SNK tests, however, do not always yield the same
results. The Tukey test controls the error rate for all comparisons si-
multaneously, whereas the SNK test controls the error rate for all
comparisons that involve spanning p means. As a result, the Tukey
test is more conservative (i.e.,. less likely to declare a difference sig-
nificant) than SNK. People who like the Tukey test use it because it
controls the overall error rate for all multiple comparisons. People
who like the SNK test observe that the test is done after doing an
analysis of variance, and they depend on the analysis of variance to
control the overall error rate. They argue that because the SNK test is
done only after the analysis of variance finds a significant difference,
they need not worry about excess false positives from the SNK test.
that are the price of the increased power. Some believe that the Tukey
test is overly conservative because it requires that all groups be tested
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as though they were separated by the maximum number of steps,
whereas the SNK procedure allows each comparison to be made with
reference to the exact number of steps that separate the two means ac-
tually being compared.

WHICH MULTIPLE COMPARISON PROCEDURE
SHOULD YOU USE?

There is no strong consensus among statisticians about which multiple
comparison test is preferred, and part of the choice is philosophic. For ex-
ample, some ‘would choose to be more conservative so that they only fol-
low up avenues of inquiry that are more strongly suggested by their data.

Unadjusted ¢ tests (also known as Fisher’s Protected Least Signifi-
cant Difference Test) are too liberal and the Bonferroni ¢ test is too con-
servative for all possible comparisons. The SNK test tends to over-detect
significant differences between means because it controls the error rate
among all comparisons spanning a fixed number of means rather than all
pairwise comparisons. The Tukey test tends to under-detect significant
differences. Between these two tests,.we prefer the SNK test for all pair-

wise comparisons as a good compromise between sensitivity and caution.
Thé Tukey test is usually used by people who prefer to be more conserva-
tive. The Holm test is less conservative than Tukey or Bonferroni, while
at the same time controlling the overall risk of a false-positive conclusion
at the nominal level for the entire family of pairwise tests (not just all
tests spanning a given number of means). We recommend the Holm test

as the first line procedure for most multiple comparison testing.
Mv .

MULTIPLE COMPARISONS AGAINST
A SINGLE CONTROL*

In addition to all pairwise comparisons, the need sometimes arises to
compare- the values of multiple treatment groups to a single control
group. ‘One alternative would be to use Bonferroni 7, SNK, or Tukey
tests to do all pairwise comparisons, then only consider the ones that in-
volve the control group. The problem with this approach is that it

*This material is important for people who are using this book as a guide for analy-
sis of their data; it can be skipped in a course on introductory biostatistics without inter-
fering with the presentation of the rest of the material in this book.
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requires many more comparisons than are actually necessary, with the
result that each individual comparison is done much more conserva-
tively than is necessary based on the actual number of comparisons of
interest. We now present- three techniques specifically designed for the
situation of multiple comparisons against a single control: additional
Bonferroni 2nd Holm ¢ tésts and Dunneit’s test. As with all pairwise
multiple comparisons, use- these tests after finding significant differ-
ences among all the groups with an analysis of vartance.

Bonferroni r Test

The Bonferroni ¢ test can be used for multiple comparisons against a
single control group. The ¢ test statistic and adjustment of the critical
value to control the total error, o, proceed as before. The only differ-
ence is that the number. of comparisons, k, is smaller because compar-
isons are being done against the control group only.

Suppose that we had only wanted to compare menstruation patterns
in joggers and runners with the controls but not with each other. Because
we are only making comparisons against control, there are a total of k = 2
comparisons (as opposed to 3 when making all pairwise comparisons). To
keep the total error rate at or below o = .05 with these two comparisons,
we do each of the ¢ tests using the critical value of 7 corresponding to
arlk = .05/2 = .025. There are 75 degrees of freedom associated with the
within-groups variance, so, interpolating® in Table 4-1, the critical value of
t for each of the comparisons is 2.29. (This value compares with 2.45 fbr
all possible comparisons. The lower critical value of ¢ for compansons
against control means that it is easier to identify a difference against con-
trol than when making all possible comparisons.) From the previous sec-
tion, the observed values of # for the comparisons of joggers with controls
and runners with controls are —2.54 and —4.35, respectively. The magni-
tudes of both these values exceed the critical value of 2.29, so we con-
clude that both joggers and runners differ s1gn1ﬁcantly from control. No
statement can be made about the comparison of Joggers with runners.

Holm t Test

Just as it is possible to use Bonferroni ¢ tests for multiple comparisons
against a single control group, it is possible to use Holm 7 tests. In

*Appendex A includes the formulas for interpolating.
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the menstruation example, there are k = 2 comparisons, so the
critical value of ¢ for the first comparison is that corresponding to
oy = apf(k —j+ 1) = .05/(2 — 1 + 1) = .025, 2.29. From the previ-
ous section, the observed value of ¢ for the comparison of runners with
controls is —4.35, which exceeds the 2.29 critical value, so we reject
the null hypothesis of no difference. For the second comparison,
o = afk —j+ 1) = .05/(2 — 2 + 1) = .05, 1.99. The value of ¢ for
the comparison of joggers with controls is —2.54, which exceeds this
value. Therefore, we again conclude that both joggers and runners are
significantly different from controls.

Dunnett’s Test

The analog of the SNK test for multiple comparisons against a single
control group is Dunnett’s test. Like the SNK test statistic, the Dunnett
q’ test statistic is defined analogously to the 7 test statistic:

Xcon - XA

)
Switl —— —
wn ncon ny

The smaller number of comparisons-in multiple comparisons against a
single control group compared with all possible comparisons is re-
flected in the sampling distribution of the ¢’ test statistic, which is in
turn reflected in the table of critical values (Table 4-4). As with the
SNK test, first order the means, then do the comparisons from the
largest to smallest difference. In contrast to the SNX test, the parameter
p is the same for all comparisons, equal the number of means in the
study. The number of degrees of freedom is the number of degrees of
freedom associated with the denominator in the analysis of variance F
test statistic. ‘

To repeat the analysis of the effect of running on menstruation us-
ing Dunnett’s test, we first compare the runners with controls (the
largest difference) by computing

,

X — X 115 -091

g = -
1 1 11

2l — + — 95—+ =

/swu (ncon nrun ) /3 95 (26 26)

= 4.35
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Table 4-4
Critical Values of ¢’

ar = 0.05 ,
vy p=2 3 4 5 6 7 8 9 10 1 12 13 B2
5 257 303 329 348 362 373 382 390 397 403 409 414 426 4.42
6 245 28 310 326 339 349 357 364 371 376 381 38 397 411
7 23 275 297 312 324 333 341 347 353 358 363 367 378 391
8 231 267 288 302 313 322 329 335 341 346 350 354 364 376
9 226 261 28 295 305 314 320 326 332 336 340 344 353 3.65
10 223 257 276 289 299 307 314 319 324 329 333 336 345 357
1 220 253 272 284 294 302 308 314 319 323 327 330 339 350
12 218 250 268 28 290 298 304 309 314 318 322 325 334 .345
13 216 248 265 278 287 294 300 306 310 314 318 321 329 340
4 214 . 246 263 275 284 291 297 302 307 311 314 318 326 336
15 213 244 261 273 28 289 295 300 304 308 312 315 323 333
16 212 242 259 271 280 287 292 297 302 306 309 312 320 3.30
17 211 241 258 269 278 285 290 295 300 303 307 310 318 327
18 210 240 256 268 276 283 289 294 298 301 305 308 316 3.25
19 209 239 255 266 275 281 287 292 296 300 303 306 314 323
200 209, 238 254 265 273 280 28 290 295 298 302 305 312 322
24 206 235 251 261 270 276 281 28 290 294 297 300 307 316
30 204 232 247 258 266 272 277 28 286 289 292 295 302 (311
40 202 229 244 254 262 268 273 277 28 28 287 290 297 i3.06
60 200 227 241 251 258 264 269 273 277 280 28 28 292 3.00
120 198 224 238 247 255 260 265 269 273 276 279 281 287 1295
o 196 221 235 244 251 257 261 265 269 272 274 277 283

i2.91
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ar = 0.01

Vg p=2 3 4 5 6 7 8 9 10 11 12 13 16 21
5 4.03 4.63 4.98 5.22 5.41 5.56 5.69 5.80 5.89 5.98 6.05 6.12 6.30 6.52
6 3.71 4.21 4.51 4.71 4.87 5.00 5.10 5.20 5.28 5.35 5.41 547 5.62 5.81
7 3.60 3.95 4.21 4.39 4.53 4.64 4.74 4.82 4.89 4.95 5.01 5.06 5.19 5.36
8 3.36 3.77 4.00 4.17 4.29 4.40 4.48 4.56 4.62 4.68 4.73 4.78 4.90 5.05
9 3.25 3.63 3.85 4.01 4.12 4.22 4.30 4.37 4.43 4.48 453 457 4.68 4.82
10 3.17 3.63 3.74 3.88 3.99 4.08 4.16 4.22 4.28 4.33 4.37 4.42 4.52 4.65
1 3.1 345 3.65 379 389 3.98 4.05 4.11 4.18 4.23 4.25 4.29 4.30 4.52
12 3.05 3.39 3.58 3.7 3.81 3.89 3.96 4.02 4.07 4.12 4.16 4.19 4.29 4.41
13 3.01 3.33 3.62 3.65 3.74 3.82 3.89 3.94 3.99 4.04 4.08 4.11 4.20 4.32
14 2.98 3.29 3.47 3.69 3.69 3.76 3.83 3.88 3.93 3.97 4.01 4.05 4.13 4.24
15 2.95 3.2 3.43 3.55 364 371 3.78 3.83 3.88 3.92 3.85 3.99 4.07 4.18
16 292 322 3.39 3.51 3.60 3.67 3.73 3.78 383 387 39N 394 402 4.13
17 2.90 3.19 3.36 3.47 . '3.56 3.63 3.69 3.74 3.79 3.83 3.86 3.90 3.98 4.08
18 2.88 3.17 3.33 3.44 3.53 3.60 366 371 | 375 3.79 3.83 3.86 3.94 4.04
19 2.86 3.15 3.31 3.42 3.50 3.67 3.63 3.68 3.72 3.76 3.79 3.83 3.90 4.00
20 2.85 3.13 3.29 3.40 3.48 3.65 3.60 3.65 3.69 3.73 3.77 3.80 3.87 3.97
24 2.80 3.07 3.22 3.32 3.40 3.47 3.62 357" 3.61 3.64 3.68 3.70 3.78 3.87
30 2.75 3.01 3.15 3.25 3.33 3.39 344 3.49 3.62 3.56 3.59 3.62 3.69 3.78
40 270 2.95 3.09 3.19 3.26 3.32 3.37 3.41 3.44 3.48 3.51 3.53 3.60 3.68
60 2.66 2.90 3.03 3.12 3.19 3.25 3.29 3.33 3.37 3.40 342 3.45 3.61 3.69 °
120 2.62 2.85 297 3.06 3.12 3.18 322 326 3.29 3.32 335 3.37 343 3.51
o 2.58 2.79 2.92 3.00 3.06 3.1 3.156 3.19 3.22 3.25 3.27 3.29 3.35 242

Source: Reprinted from C. W. Dunnett, “New Tables for Multiple Comparisons with a Control,"” Biometrics, 20:482-491, 1964.
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There are three means, so p =3, and there are 75 degrees of freedom
associated with the within-groups variance estimate. From Table 4-4
the critical value of g’ for oy =.05 is 2.28, so we conclude that there is
a difference between the runners and controls (P < 05) Next, we com-
pare the joggers with controls by computing

L on =X MS—101

7= 1T 1)\ 1
2 R + -
\/szt (ncon njog) \/3 . (26 26)

As before, there are three means, so p = 3; from Table 4-4, the critical
value of ¢’ remains 2.26, so we conclude that there is a significant differ-
ence between the joggers and controls (P << .05). Our overall conclusion
is that there is a significant difference in menstruation patterns between
both the runners and the joggers and the controls. No statement can be
made concerning the differences between the runners and the joggers.

In sum, we conclude that runners and joggers have significantly
fewer menses per year than women in the control group, but that there
is not a significant difference between the runners and the joggers.
Since we only did a small number of comparisons (three), this is the
same conclusion we drew using the Bonferroni and Holm ¢ tests to
conduct the multiple comparisons. Had we had an experiment with
more test groups (and hence many more comparisons), we would see
that Dunnett’s test was capable of detecting differences that the Bon-
ferroni ¢ test missed because of the large values of ¢ (i.e., small values
of P) required to assert a statistically significant difference in any
individual pairwise comparison. Dunnett’s test is more sensitive than
the Bonferroni ¢ test because it uses a more sophisticated mathemati-
cal model to estimate the probability of erroneously concluding a dif-
ference.

It is less clear whether to recommend the Holm test over Dunnett’s
test for multiple comparisons against a control group. Theoretically, the
sequentially rejective step-down Holm test should be more powerful
than the single-step Dunnett's test, but there have been.no comprehen-
sive studies of the relative power of Holm’s versus Dunnett’s tests. You
can get a simplified idea of the relative power by considering the run-
ning example that we have been considering. The critical value of Dun-
nett’s ¢’ (for p = 3, DF = 75, and o = 0.05) for each of the two-
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groups of runners versus controls (runners versus controls and joggers
versus controls) is 2.26. The Holm test applied to this family of two
comparisons would require critical values of 2.29 for the first test and
1.99 for the second test. Thus, it would be slightly less sensitive for the
first comparison and slightly more sensitive for the second."

THE MEANING OF P

Understanding what P means requires understanding the logic of statis-
tical hypothesis testing. For example, suppose an investigator wants to
test whether or not a drug alters body temperature. The obvious experi-
ment is to select two similar groups of people, administer a placebo to
one and the drug to the other, measure body temperature in both
groups, then compute the mean and standard deviation of the tempera-
tures measured in each group. The mean responses of the two groups
will probably be different, regardless of whether the drug has an effect
or not for the same reason that different random samples drawn from
the same population yield different estimates for the mean. Therefore,
the question becomes: Is the observed difference in mean temperature
of the two groups likely to be due to random variation associated with
the allocation of individuals to the two experimental groups or due to
the drug? '

" To answer this question, statisticians first quantify the observed
difference between the two samples with a single number, called a test
statistic, such as E t, g or q'. These statistics, like most test statistics,
have the property that the greater the difference between the samples,
the greater their value. If the drug has no effect, the test statistic will be
a small number. But what is “small”?

To find the boundary between “small” and “big” values of the test
statistic, statisticians assume that the drug does not affect temperature
(the null hypothesis). If this assumption is correct, the two groups of
people are simply random samples from a- single population, all of
whom received a placebo (because the drug is, in effect, a placebo).
Now, in theory, the statistician repeats the experiment using all possible
samples of people and computes the test statistic for each hypothetical
experiment. Just as random variation produced different values for
means of different samples, this procedure will yield a range of values
for the test statistic. Most of these values will be relatively small, but
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sheer bad Iuck requires that there be a few samples that are not repre-
sentative of the entire population. These samples will yield relatively
large values of the test statistic even if the drug had no effect. This exer-
cise produces only a few of the possible values of the test statistic, say
5 percent of them, above some cutoff point. The test statistic is “big” if
it is larger than this cutoff point. ‘
Having determined this cutoff point, we execute an experiment on a
drug with unknown properties and compute the test statistic. It is “big.”
Therefore, we conclude that there is less than a 5 percent chance of ob-
serving data which led to the computed value of the test statistic if the
assumption that the drug has had no effect was true. Traditionally, if the
chances of observing the computed test statistic when the intervention
has no effect are below 5 percent, one rejects the working assumption
that the drug has no effect and asserts that the drug does have an effect.
There is, of course, a chance that this assertion is wrong: about 5 per-
cent. This 5 percent is known as the P value or significance level.
Precisely,

The P value is the probability of obtaining a value of the test statis-
tic as large as or larger than the one computed from the data when in
reality there is no difference between the different treatments.

Or, in other words,

The P value is the probability of being wrong when asserting that a
true difference exists.

If we are willing to assert a difference when P < .05, we are tacitly
agreeing to accept the fact that, over the long run, we expect 1 assertion
of a difference in 20 to be wrong.*

The convention of considering a difference “statistically signifi-
cant” when P < .05 is widely accepted. In fact, it came from an

*The interpretation of P values that we adopt in this book is the frequentist ap-
proach, in which the P value is an estimate of the frequency of false positives based only
on the analysis of the data in the experiment at hand. An alternative approach, which
involves bringing other prior knowledge to bear, is known as the Bayesian approach. For
a discussion of Bayesian interpretation of P values, with a comparison to the frequentist
approach and several clinical examples, see W. S. Browner and T. B. Newman, “Are All
Significant P Values Created Equal? The Analogy between Diagnostic Tests and Clinical
Research,” JAMA 257:2459-2463, 1987. Also J. Brophy and L. Joseph, “Placing Trials
in Context Using Bayesian Analysis: GUSTO Revisited by Reverend Bayes,” JAMA
273:871-875, 1995. '
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arbitrary decision by one person, Ronald A. Fisher, who invented much
of modern parametric statistics (including the F statistic, which is
named for him). In 1926, Fisher published a paper* describing how to
assess whether adding manure to a field would increase crop yields
which introduced the idea of statistical significance and established the
5 percent standard. He said:

To an acre of ground the manure is applied; a second acre, sown with simi-
lar seed and treated in all other ways like the first, receives none of the ma-
nure. When the produce is weighed, it is found that the acre which re-
ceived the manure has yielded a crop larger indeed by, say, 10 percent. The
manure has scored a success, but the confidence with which such a result
should be received by the purchasmg public depends wholly on the man-
ner in which the experiment was carried out.

First, if the experimenter could say that in twenty years of experience with-
uniform treatment the difference in favour of the acre treated with manure
had never before touched 10 percent., the evidence would have reached a
point which may be called the verge of significance; for it is convenient to
draw the line at about the level at which we can say: “Either there is some-
thing in the treatment, or a coincidence has occurred such as does not
occur more than one in twenty trials.” This level, which we may call the
5 percent point, would be indicated, though very roughly, by the greatest
chance deviation observed in twenty successive trials. To locate the
5 percent point with any accuracy we should need about 500 years’ experi-
ence, for we could then, supposing no progressive changes in fertility were
in progress, count out the 25 largest deviations and draw the line be-
tween the 25th and 26th largest deviation. If the difference between the
two acres in our experimental year exceeded this value, we should have
reasonable grounds for calling this value significant.

If one in 20 does not seem high enough odds, we may, if we prefer it, draw
the line at 1 in 50 (the 2 percent point) or 1 in 100 (the 1 percent point.)
Personally, the writer prefers to set a low standard of significance at the
5 percent point, and ignore entirely all results which fails to reach this
level. [emphasis added]

*R. A. Fisher. “The Amangement of Field Experiments,” J. Ministry Ag.
33:503-513, 1926. for a discussion of this paper in its historical context, icluding
evidence that the logic of hypothesis testing dates back to Blaise Pascal and Pierré Fer-.
mat, in 1964, see M. Cowles and C. Davis, “On the Origins of the .05 Level of Statistical
Significance, Am. Psychol. 37:533-558, 1982.
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Although P < .05 is widely accepted, and you will certainly not gener-
ate controversy if you use it, a more sensible approach is to consider the
P value in making decisions about how to interpret your results without
slavishly considering 5 percent a rigid criterion for “truth.”

It is commonly believed that the P value is the probability of making
a mistake. There are obviously two ways an investigator can reach a mis-
taken conclusion based on the data, reporting that the treatment had an ef-
fect when in reality it did not or reporting that the treatment did not have
an effect when in reality it did. As noted above, the P value only quantifies
the probability of making the first kind of error (called a Type I or « er-
ror), that of erroneously concluding that the treatment had an effect when
in reality it did not. It gives no information about the probability of mak-
ing the second kind of error (called a Type II or B error), that of conclud-
ing that the treatment had no effect when in reality it did. Chapter 6 dis-
cusses how to estimate the probability of making Type II errors.

PROBLEMS

4-1 - Conahan and associates also measured the mean arterial pressure and to-
tal perlpheral resistance (a measure of how hard it is to produce a given
flow through the artérial bed) in 9 patients who were anesthetized with
halothane and 16 patients who were anesthetized with morphine. The re-
sults are summanzed in Table 4-2. Is there evidence that these two
anesthetic agents are assoc1ated with dxfferences in either of these two
variables?

4-2 Cocaine has many adverse effects on the heart, to the point that when
people under 40 years of age appear in an emergency room with a
heart attack, it is a good guess that it was precipitated by cocaine. In
experiments, cocaine has been shown to constrict coronary arteries and
reduce blood flow to the heart muscle as well as depress the overall
mechanical function of the heart. A class of drugs know as calcium
channel blockers has been used to treat problems associated with coro-
nary artery vasoconstriction in other contexts, so Sharon Hale and col-
leagues (“Nifedipine Protects the Heart from the Acute Deleterious
Effects of Cocaine if Administered Before but Not After Cocaine,”
Circulation, 83:1437-1443, 1991) hypothesized that the calcium
channel blocker nifedipine could prevent coronary artery vasoconstric-
tion and the attendant reduction in blood flow to the heart and mechan-
ical function. If true, nifedipine might be useful for treating people
who had heart problems brought on by cocaine use. They measured
mean arterial pressure in two groups of dogs after administering
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cocaine, one of whom was treated with nifedipine and the other of
which received a placebo.

Mean Arterial Pressure (mmHg)‘ after
Receiving Cocaine

Placebo - Nifedipine
156 73
171 - , 81
133 : 103
102 . , 88
129 130
150 : 106
120 ‘ 106
110 NEN
112 : 122
130 108
105 , 99

Does treatment with nifedipine after administering cocaine affect mean
arterial pressure?

4-3 Hale and her colleagues also directly measured the diameter of coronary
arteries in dogs after receiving cocaine, and then being treated with a
placebo or nifedipine. Based on the following data, did the nifedipine af-
fect the diameters of the coronary arteries? ‘

Diameter of Coronary Artery (mm)

Placebo : ' Nifedipine
25 25
2.2 1.7
2.6 } 15
2.0 25
2.1 1.4
1.8 . 19
2.4 ) .23
2.3 ’ 2.0
2.7 2.6
2.7 . 2.3
19 2.2

Does treatment with nifedipine affect the diameter of the coronary arter-
ies in dogs who have received cocaine?
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4-6

4-7
4-8
4-9

4-10
4-11

4-12

4-13

CHAPTER 4

Rework Probs. 3-1 and 3-5 using the 7 test. What is the relationship be-

‘tween the value of ¢ computed here and the value of F computed for

these data in Chap. 3?

Problem 3-2 presented the data that White and Froeb collected on the lung
function of nonsmokers working in smoke-free environments, nonsmokers
working in smoky environments, and smokers of various intensity. Analysis
of variance revealed that these data were inconsistent with the hypothesis
that the lung function was the same in all these groups. Isolate the various
subgroups with similar lung function. What does this result mean in terms
of the original question they posed: Does chronic exposure to other peo-
ple’s smoke affect the health of healthy adult nonsmokers?

Directly test the limited hypothesis that exposure to other people’s
smoke affects the health of healthy nonsmokers by comparing each’
group of involuntary smokers and active smokers with the nonsmokers
working in a clean environment as the control group Use the data from
Prob. 3-2 and Dunnett’s test.

Problem 3-3 led to the conclusion that HDL concentrauon is not thc
same in inactive men, joggers, and marathon runners. Use Bonferroni ¢
tests to compare each of these groups pairwise.

Suppose that we were just interested in comparisons of the joggers and
the marathon men with the inactive adults (as the control group). Use the
data in Prob. 3-3 and make these comparisons with Bonferroni # tests.
Use the data from Prob. 3-4 to determine which interventions have protec-
tive effects on the heart during a prolonged ischemic attack. Can a pharma-
cological agent offer the same benefit as a brief ischemic preconditioning?
Use the Bonferroni ¢ test to isolate which strains of mice discussed in
Prob. 3-7 differ in testicular response to estrogen treatment.

Repeat Prob. 4-10 using the SNK and Holm tests. Compare the results
with those of Prob. 4-10 and explain any differences. '

In Prob. 3-6 you determined there was a difference in burnout among
nursing staffs of different patient care units. Isolate these differences and
discuss them.

In a test of significance, the P value of the test statistic is ,063. Are the
data statistically significant at

a. boththe o = .05 and a = .01 levels?

b. the o = .05 level but not at the a = .01 level?

c. the a = .01 level but not at the a=.05 level?

d. neither the o = .05 nor the o = .01 levels?



\ ' Chapter 5

How to Analyze Rates
and Proportions

The statistical procedures developed in Chapters 2 to 4 are appropriate
for analyzing the results of experiments in which the variable of interest
takes on a continuous range of values, such as blood pressure, urine
production, or length of hospital stay. These, and similar variables, are
measured on an interval:scale because they are measured on a scale
with constant intervals, e.g., millimeters of mercury, milliliters, or days.
Much of the information physicians, nurses, and medical scientists use
cannot be measured on interval scales. For example, an individual may
be male or female, dead or alive, or Caucasian, African American, Mex-
ican American, or Asian. These variables are measured on a nominal
scale, in which there is no arithmetic relationship between the different
classifications. We now develop the statistical tools necessary to de-
scribe and analyze such information.*

*There is a third class of variables in which responses can be ordered without an
arithmetic relationship between the different possible states. Ordinal scales often appear
in clinical practice; Chaps. 8 and 10 develop statistical procedures to analyze variables
measured on ordinal scales.

113



114 CHAPTER 5

It is easy to describe things measured on a nominal scale; simply
count the number of patients or experimental subjects with each condi-
tion and (perhaps) compute the corresponding percentages.

Let us continue our discussion of the use of halothane versus
_morphine in open-heart surgery.* We have already seen that these two
anesthetic agents produce differences in blood pressure that are un-
likely to be due to random sampling effects. This finding is interest-
ing, but the important clinical question is: Was there any difference in
mortality? Of the patients anesthetized with halothane, 8 of 61 (13.1
percent) died compared with 10 of the 67 anesthetized with morphine
(14.9 percent). This study showed that halothane was associated with
a 1.8 percent lower mortality rate in the 128 patients who were stud-
ied. Is this difference due to a real clinical effect or s1mp1y to random
variation?

To answer this and other questions about nominal data, we must
first invent a way to estimate the precision with which percentages
based on limited samples approximate the true rates that would be
observed if we could examine the entire population, in this case, all
people who will be anesthetized for open-heart surgery. We will use
these estimates to construct statistical procedures to test hypotheses.

BACK TO MARS

Before we can quantify the certainty of our descriptions of a population
on the basis of a limited sample, we need to know how to describe the
population itself. Since we have already visited Mars and met all 200
Martians (in Chapter 2), we will continue to use them to develop ways
to describe populations. In addition to measuring the Martians’ heights,
we noted that 50 of them were left-footed and the remaining 150 were
right-footed. Figure 5-1 shows the entire population of Mars divided
according to footedness. The first way in which we can describe this
population is by giving the proportion p of Martians who are in each
class. In this case prg = Yw = 0.25 and pygn = a0 = 0.75. Since
there are only two possible classes, notice that pygn = 1 — pes. Thus,

*When this study was discussed in Chap. 4, we assumed the same number of pa-
tients in each treatment group to simplify the computation. In this chapter we use the ac-
tual number of patients in the study.
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Figure 5-1 Of the 200 Martians 50 are left-footed, and the remaining 150 are
right-footed. Therefore, if we select one Martian at random from this population,
there is a P = oo = 0.25 = 25 percent chance it will be left-footed.

whenever there are only two possible classes and they are mutually ex-
clusive, we can completely describe the division in the population with
the single parameter p, the proportion of members with one of the at-
tributes. The proportion of the population with the other attribute is al-
ways 1 — p. ‘ ’ ’

Note that p also is the probability of drawing a left-footed Martian
if one selects one member of the population at random.

Thus p plays a role exactly analogous to that played by the popu-
lation mean p in Chapter 2. To see why, suppose we associate the
value X = 1 with each left-footed Martian and a value of X = 0 with
each right-footed Martian. The mean value of X for the population is

33X 141+ +1+0+0++0
TN T 200 :

_50(1) + 150(0) _ 50

© 200 200

= 0.25

which is pjeg-
This idea can be generalized quite easily using a few equations.
Suppose M members of a population of N individuals have some
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attribute and the remaining N — M members of the population do not.
Associate a value of X = 1 with the population members having the at-
tribute and a value of X = 0 with the others. The mean of the resulting
collection of numbers is

_§?§=M(1)+(N—M)(0)_ﬂ_
N N TN

i

the proportion of the population having the attribute.

Since we can compute a mean in this manner, why not compute a
standard deviation in order to describe variability in the population?
Even though there are only two possibilities, X =1, and X=0, the
amount of variability will differ, depending on the value of p. Figure 5-2
shows three more populations of 200 individuals each. In Fig. 5-24 only
10 of the individuals are left-footed; it exhibits less variability than the
population shown in Fig. 5-1. Figure 5-2B shows the extreme case in
which half the members of the population fall into each of the two
classes; the variability is greatest. Figure 5-2C shows the other extreme;
all the members fall into one of the two classes, and there is no variabil-
ity at all. '

To quantify this subjective impression, we compute the standard
deviation of the 1s and Os associated with each member of the popula-
tion when we computed the mean. By definition, the population stan-
dard deviation is

oo [PX -
N

X =1 for M members of the population and O for the remaining N—M
members, and p.'=p; therefore

Figure 5-2 This figure illustrates three different populations, each containing
200 members but with_different proportions of left-footed members. The stan-
dard deviation, o = Vp({1 — p) quantifies the variability in the population.
(A) When most of the members fall in one class, & is a small value, 0.2, indicat-
ing relatively little variability. (B} In contrast, if half the members fall into each
class, o reaches its maximum value of .5, indicating the maximum possible vari-
ability. {C) At the other extreme, if all members fall into the same class, there is
no variability at-all and o = 0.
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N

 MA =P+ N —Mp M., _My,
e at L (R

But since M/N =p is the proportion of population members with the
attribute, :

\/(1—p)2+(1—p)2+"'+(1—p)2+(0—p)2+(0—p)2+"'+(0*p)2

o=Vp(l —p?*+ (1 - pp* = Vipd — p) + p°I(1 — p)

which simplifies to

o = Vp(l - p)

This equation for the population standard deviation produces quantita-
tive results that agree with the qualitative impressions we developed
from Figs. 5-1 and 5-2. As Fig. 5-3 shows, 0 =0 whenp=0orp =1,
that is, when all members of the populatidn either do or do not have the
attribute, and o is maximized when p = .5, that is, when any given
member of the population is as likely to have the attribute as not.

0.5

.ﬁ\

) o=V p{1-p)
i

am
v

0 ' 0.5 ' 1.0

p

Figure 5-3 The relationship between the standard deviation of a population di-
vided into two categories varies with p, the proportion of members in one of the
categories. There is no variation if all members are in one category or the other
(so o = 0 when p=0 or 1) and maximum variability when a given member is
equally likely to fall in one class or the other (o = 0.5 when p=0.5).
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Since o depends only on p, it really does not contain any additional
information (in contrast to the mean and standard deviation of a nor-
mally distributed variable, where . and o provide two independent
pieces of information). It will be most useful in computing a standard
error associated with estimates of p based on samples drawn at random
from populations like those shown in Figs. 5-1 or 5-2.

ESTIMATING PROPORTIONS FROM SAMPLES

Of course, if we could observe all members of a population, there would
not be any statistical question. In fact, all we ever see is a limited, hope-
“fully representative, sample drawn from that population. How accurately
does the proportion of members of a sample with an atiribute reflect the
proportion of individuals in the population with that attribute? To answer
this question, we do a sampling experiment, just as we did in Chapter 2
when we asked how well the sample meéan estimated the population mean.

O0CO000Q0000e
p=50/200=0.25 B 0000000000
0000000000
000000QC000
000CO0000O0
0000000000
O000000000
OCe0000C000
Q000000000
0000000000
O00000@000 [eX XeJeJoReReXeXoXo)
0000000000 0000000000
000000000 0000000 @00
00000000 @C 0000000000
®O0Q0000C0O0 000000000
teft-footed ' Right-footed
$=5/10=0.50
00000 0000
Left-footed o Right-footed

Figure 5-4 The top panel shows one random sample-of 10 Martians selected
from the population in Fig. 5~1; the bottom panel shows what the investigator
would see. Since this sample included 5 left-footed Martians and 5 right-footed
Martians, the investigator would estimate the proportion of left-footed Martians
to be P = %o = .5, where the circumflex denotes an estimate.
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Left-footed Right-footed Left-footed Right-footed

[-XX) XXX XXX 000 C000DOO0

Left-footed Right-footed Left-footed Right-footed

@ cooo00000 || 0O 00000000

Figure 5-5 Four more random samples of 10 Martians each, together with the
sample as it would appear to the investigator. Depending which sample hap-
pened to be drawn, the investigator would estimate the proportion of left-footed
Martians to be 30, 30, 10, or 20 percent.

Suppose we select 10 Martians at random from the entire popula-
tion of 200 Martians. Figure 5-4 (top) shows which Martians were
drawn; Fig. 5-4 (bottom) shows all the information the investigators
who drew the sample would have. Half the Martians in the sample are
left-footed and half are right-footed. Given only this information, one
would probably report that the proportion of left-footed Martians is 0.5,
or 50 percent.

Of course, there is nothing special about this sample, and one of
the four other random samples shown in Fig. 5-5 could just as well
have been drawn, in which case the investigator would have reported
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Figure 5-6 There will be a distribution
of estimates of the proportion of left-
footed Martians i, depending on which
random sample the investigator happens
to draw. This figure shows the 5 specific
random samples drawn in Figs. 5-4 and
5-5 together with 20 more random
samples of 10 Martians each. The mean
of the 25 estimates of p and the stan-
dard deviation of these estimates are
also shown. The standard deviation of
this distribution is the standard error of
the "estimate of the proportion o5 it
quantifies the precision with which p es-
timates p.
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that the proportion of left-footed Martians were 30, 30, 10, or 20 per-
cent, depending on which random sample happened to be drawn. In
each case we have computed an estimate of the population proportion p
based on a sample. Denote this estimate p. Like the sample mean, the
possible values of p depend on both the nature of the underlying popu-
lation and the specific sample that is drawn. Figure 5-6 shows the five
values of p computed from the specific samples in Figs. 5-4 and 5-5 to-
gether with the results of drawing another 20 random samples of 10
Martians each. Now we change our focus from the population of Mar-
tians to the population of all values of p computed from random sam-
ples of 10 Martians each. There are more than 10'® such samples with
their corresponding estimates p of the value of p for the population of
Martians. ’ ‘

The mean estimate of p for the 25 samples of 10 Martians each
shown in Fig. 5-6 is 30 percent, which is remarkably close to the true
proportion of left-footed Martians in the population (25 percent or
0.25). There is some variation in the estimates. To quantify the variabil-
ity in the possible values of p, we compute the standard deviation of
values of p computed from random samples of 10 Martians each. In
this case, it is about 14 percent or 0.14. This number describes the vari-
ability in the population of all possible values of the proportion of left-
footed Martians computed from random samples of 10 Martians each.

Does this sound familiar? It should. It is just like the standard error
of the mean. Therefore, we define the standard error of the estimate of
a proportion to be the standard deviation of the population of all possi-
ble values of the proportion computed from samples of a given size.
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Just as with the standard error of the mean

Gﬁzﬁ

in which o}, is the standard error of the proportion, o is the standard de-
viation of the population from which the sample was drawn, and # is
the sample size. Since 0 = Vp(1 — p),

_ p(t ~p)
“ﬁ_\/T

We estimate the standard error from a sample by replacing the true
value of p in this equation with our estimate p obtained from the ran-
dom sample. Thus,

- A —D
N

The standard error is a very useful way to describe the uncertainty in
the estimate of the proportion of a population with a given attribute
because the central-limit theorem (Chapter 2) also leads to the con-
clusion that the distribution of p is approximately normal, with mean
p and standard deviation o for large enough sample sizes. On the
other hand, this approximation fails for values of p near 0 or 1 or
when the sample size n is small. When can you use the normal distri-
bution? Statisticians have shown that it is adequate when np and
n(l —p) both exceed about 5.* Recall that about 95 percent of all
members of a normally distributed population fall within 2 standard
deviations of the mean. When the distribution of p approximates the
normal distribution, we can assert, with about 95 percent confidence,
that the true proportion of population members with the attribute of
interest p lies within 2s; of p.

These results provide a framework within which to consider the
question we posed earlier in the chapter regarding the mortality

*When the sample size is too small to use the normal approximation, you need to
solve the problem exactly using the binomial distribution. For a discussion of the
binomial distribution, see J. H. Zar, Biostatistical Analysis, 2d ed, Prentice-Hall, Engle-
wood Cliffs, N.J., 1984, chap. 22 “The Binomial Distribution.”
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rates associated with halothane and morphine anesthesia; 13.1 per-
cent of 61 patients anesthetized with halothane and 14.9 percent of
67 patients anesthetized with morphine died following open-heart
surgery. The standard errors of the estimates of these percentages are

1311 — 131
S5 = ——% =.043 = 4.3%
for halothane and
149(1 — .149
Sﬁmor = (—67—'—) = .044 = 4.4%

for morphine. Given that there was only a 1.8 percent difference in
the observed mortality rate, it does not seem likely that the differ-
ence in observed mortality rate is due to anything beyond random
sampling.

Before moving on, we should pause to list explicitly the assump-
tions that underlie this approach. We have been analyzing what statisti-
cians call independeﬁt Bernoulli trials, in which

* Each individual trial has two mutually exclusive outcomes.
» The probability p of a given outcome remains constant.
* Allthe trials are independent.

In terms of a population, we can phrase these assumptions as fol-
lows:

* Each member of the population belongs to one of two classes.

* The proportion of members of the population in one of the
classes p remains constant.

* Each member of the sample is selected mdependently of all
~ other members.

HYPOTHESIS TESTS FOR PROPORTIONS

In Chapter 4 the sample mean and standard error of the mean provided the
basis for constructing the ¢ test to quantify how compatible observations
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were with the null hypothesis. We defined the ¢ statistic as

difference of sample means

t= —
standard error of difference of sample means

The role of p is analogous to that of the sample mean in Chapters 2 and

4, and we have also derived an expression for the standard error of p.

We now use the observed proportion of individuals with a given at-

tribute and its standard error to construct a test statistic analogous to f to

test the hypothesis that the two samples were drawn from populations

containing the same proportion of individuals with a given attribute.
The test statistic analogous to ¢ is

_ difference of sample proportions
. standard error of difference of sample proportions

Let p; and p, be the observed proportions of individuals with the at-
tribute of interest in the two samples. The standard error is the standard
deviation of the population of all possible values of p associated with
samples of a given size, and since variances of differences add, the
standard error of the difference in proportions is

2 1 2
KN sﬁl+sﬁ2

D17 P,
Therefore
I P R )
2 2
o=, VS, 55,

z=
PP

If n, and n, are the sizes of the two samples,

R YT N Y (e )
Py n, ) P2 ny

then

7= ﬁl — D
\/[131(1 - ﬁl)/,"h] + [ 51 — py)in,]

is our test statistic.
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z replaces ¢ because this ratio is approximately normally distributed
for large enough sample sizes,” and it is customary to denote a nor-
mally distributed variable with the letter z.

Just as it was possible to improve the sensitivity of the 7 test by
pooling the observations in the two sample groups to estimate the popu-
lation variance, it is possible to increase the sensitivity of the z test for
proportions by pooling the information from the two samples to obtain
a single estimate of the population standard deviation s;. Specifically, if
the hypothesis that the two samples were drawn from the same popula-
tion is true, p; = my/n; and P, = my/n,, in which m; and m, are the
number of individuals in each sample with the attribute of interest, are
both estimates of the same population proportion p. In this case, we
would consider all the individuals drawn as a single sample of size n; +
n, containing a total of m; + m, individuals with the attribute and use
this single pooled sample to estimate P '

;'\PAI — B wh Wied 10
&(@\A]bl

in which case
s=Vp(d —p

and we can estimate

LR SR 1 1
=\/—+—= P = pl—+—
n n,

Therefore, our test statistic, based on a pooled estimate of the uncer-
tainty in the population proportion, is

| p—ps Chack bl 4 |
: = ~ ~ )"“’;\ e QLQ LS
L Ve = piln, ¥ 1my f%@m S

Like the  statistic, z w111 have a range of possible values depending
on which random samples happen to be drawn to compute p; and p,,
even if both samples were drawn from the same population. If z is suffi-
ciently “big,” however, we will conclude that the data are inconsistent

*The criterion for a large sample is the same as in the last section, namely that np
and n(1 — p) both exceed about 5 for both samples. When this i is not the case, one should
use the Fisher exact test discussed later in this chapter.
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with this hypothesis and assert that there is a difference in the propor-
tions. This argument is exactly analogous to that used to define the crit-
ical values of the ¢ for rejecting the hypothesis of no difference. The
only change is that in this case we use the standard normal distribution
(Fig. 2-5) to define the cutoff values. In fact, the standard normal distri-
bution and the ¢ distribution with an infinite number of degrees of free-
dom are identical, so we can get the critical values for 5 or 1 percent
confidence levels from Table 4-1. This. table shows that there is less
than a 5 percent chance of z being beyond —1.96 or +1.96 and less
than a 1 percent chance of z being beyond —2.58 or +2.58 when, in
fact, the two samples were drawn from the same population.

The Yates Correction for Continuity

The standard normal distribution only approximates the actual distribu-
tion of the z test statistic in a way that yields P values that are always
smaller than they should be. Thus the results are biased toward con-
cluding that the treatment had an effect when the evidence does not
support such a conclusion. The mathematical reason for this problem
has to do with the fact that the z test statistic can only take on discrete
values, whereas the theoretical standard normal distribution is continu-
ous. To obtain values of the z test statistic which are more compatible
with the theoretical standard normal distribution, statisticians have in-
troduced the Yates correction (or continuity correction), in which the
expression for z is modified to become

_ |pr = Bol = Yo/, + 1/ny)
Vp(l — p(1/ny + 1/ny)

This adjustment slightly reduces the value of z associated with the data
and compensates for the mathematical problem just described.

Mortality Associated with Anesthesia for Open-Heart
Surgery with Halothane or Morphine

We can now formally test the hypothesis that halothane and morphine
are associated with the same mortality rate when used-as anesthetic
agents in open-heart surgery. Recall that the logic of the experiment
was that halothane depressed cardiac function whereas morphine did
not, so in patients with cardiac problems it ought to be better to use
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morphine anesthesia. Indeed, Chapters 3 and 4 showed that halothane
produces lower mean arterial blood pressures during the operation than
morphine; so the supposed physiological effect is present.

Nevertheless, the important question is: Does either anesthetic
agent lead to a detectable improvement in mortality associated with
this operation in the period immediately following the operation?
Since 8 of the 61 patients anesthetized with halothane (13.1 percent)
and 10 of the 67 patients anesthetized with morphine (14.9 percent)
died,

. 8+10

b= ver 0.141
np for the two samples is 0.141(61) = 8.6 and 0.141(67) = 9.4. Since
both exceed 5, we can use the test described in the last section.* Our
test statistic is therefore :

. . 1
|phlo - pmorl - E(l/nhlo + 1/nmor)

Vil — p)A/ny, + 1/n,,)

11 1
0.131 — 0.149| — —(— +

=

2\61 ﬁ)
= 0.04

\/ (0.141)(1 - 0"‘“)(61? ; %)

which is quite small. Specifically, it comes nowhere near 1.96, the z
value that defines the most extreme 5 percent of all possible values of z
when the two samples were drawn from the same population. Hence,
we do not have evidence that there is any difference in the mortality as-
sociated with these two anesthetic agents, despite the fact that they do
seem to have different physiological effects on the patient during
surgery. : o

This study illustrates the importance of looking at outcomes in
clinical trials. The human body has tremendous capacity to adapt
not only to trauma but also in medical manipulation. Therefore, sim-
ply showing that some intervention (like a difference in anesthesia)

*n(1 —p) also exceeds 5 in both cases. We did not need to check this because
p<05,s0np<n(l —p). :
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changed a patient’s physiological state (by producing different blood
pressure) does not mean that in the long run it will make any difference
in the clinical outcome. Focusing on these intermediate variables, often
called process variables, rather than the more important outcome vari-
ables may lead you to think something made a clinical difference when
it did not. For example, in this study there was the expected change in
the process variable, blood pressure, but not the outcome variable, mor-
tality. If we had stopped with the process variables, we might have con-
cluded that morphine anesthesia was superior to halothane in patients
with cardiac problems, even though the choice of anesthesia does not
appear to have affected the most important variable, whether or not the
patient survived.

Keep this distinction in mind when reading medical journals and
listening to proponents argue for their tests, procedures, and therapies.
It is much easier to show that something affects process variables than
the more important outcome variables. In addition to being easier to
produce a demonstrable change in process variables than outcome vari-
ables, process variables are generally easier to measure. Observing out-
comes may require following the patients for some time and often pre-
sent difficult subjective problems of measurement, especially when one
tries to measure “quality of life” variables. Nevertheless, when assess-
ing whether or not some new procedure deserves to be adopted in an
era of limited medical resources, you should seek evidence that some-
thing affects the patient’s outcome. The patient and the patient’s family
care about outcome, not process.

Prevention of Thrombosis in People
Receiving Hemodialysis

People with chronic kidney disease can be kept alive by dialysis; their
blood is passed through a machine that does the work of their kidneys
and removes metabolic products and other chemicals from their blood.
The dialysis machine must be connected to one of the patient’s arteries
and veins to allow the blood to pass through the machine. Since pa-
tients must be connected to the dialysis machine on a regular basis, it is
necessary to create surgically a more or less permanent connection that
can be used to attach the person’s body to the machine. One way of do-
ing this is to attach a small Teflon tube containing a coupling fitting,
called a shunt, between an artery and vein in the wrist or arm. When the
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patient is to be connected to the dialysis machine, the tubing is con-
nected to these fittings on the Teflon tube; otherwise, the two fittings
are simply connected together 50 that the blood just flows directly from
the small artery to the vein. For a variety of reasons, including the sur-
gical technique used to place the shunt, disease of the artery or vein, lo-
cal infection, or a reaction to the Teflon adapter, blood clots (throm-
boses) tend to form in these shunts. These clots have to be removed
regularly to permit dialysis and can be severe enough to require tying
off the shunt and creating a new one. The clots can spread down the
artery or vein, making it necessary to pass a catheter into the artery or
vein to remove the clot. In addition, these clots may break loose and
lodge elsewhere in the body, where they may cause problems. Herschel
Harter and colleagues™ knew that aspirin tends to inhibit blood clotting
and wondered whether thrombosis could be reduced in people who
were receiving chronic dialysis by giving them a low dose of aspirin
(160 mg, one-half a common aspirin tablet) every day to inhibit the
blood’s tendency to clot.

They completed a randomized clinical trial in which all people be-
ing dialyzed at their institution who agreed to participate in the study
and who had no reason for not taking aspirin (like an allergy) were ran-
domly assigned to a group that received either a placebo or aspirin. To
avoid bias on either the investigators’ or patients’ parts, the study was
double-blind. Neither the physician administering the drug nor the pa-
tient receiving it knew whether the tablet was placebo or aspirin. This
procedure adjusts for the placebo effect in the patients and prevents the
investigators from looking harder for clots in one group or the other.
The double-blind randomized clinical trial is the best way to test a new
therapy. ‘ ‘

They continued the study until 24 patients developed thrombi, be-
cause they assumed that with a total of 24 patients with thrombi any
differences between the placebo and aspirin-treated groups would be
detectable. Once they reached this point, they broke the code on the
bottles of the pills and analyzed their results: 19 people had received as-
p\irin and 25 people had received placebo (Table 5-1). There did not
seem to be any clinically important difference in these two groups in

*H, R. Harter, J. W. Burch, P. W. Majerus, N. Stanford, J. A. Delmez; C. B. Anderson,
and C. A. Weerts, “Prevention of Thrombosis in Patients in Hemodialysis by Low-Dose
Aspirin,” N. Engl. J. Med., 301:577-579, 1979.
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terms of age distribution, sex, time on dialysis at entry into the study, or
other variables.

Of the 19 people receiving aspirin, 6 developed thrombi; of the 25
people receiving placebo 18 developed thrombi. Is this difference be-
yond what we would expect if aspirin had no effect and acted like a
placebo, so the two groups of patients could be considered as having
been drawn from the same population in which a constant proportion p
of patients were destined to develop thrombi?

We first estimate p for the two groups:

6

Pap =19 = 0.32

for the people who received aspirin and

18 ' .
ppla = g = 0.72

for the people who received placebo.

Next, we make sure that np and n(1 — p) are greater than about 5
for both groups, to be certain that the sample sizes are large enough for
the normal distribution to reasonably approximate the distribution of
our test statistic z if the hypothesis that aspirin had no effect is true. For
the people who received aspirin

naspp asp =6

Nagp(l = Pogp) = 13

Table 5-1 Thrombus Formation in People Receiving
Dialysis and Treated with Placebo or Aspirin

Number of patients

Sample group Developed-thrombi Free of thrombi Treated

Placebo - 18 A 7 25

Aspirin 6 13 o 19
Total 24 20 44

Source: H. R. Harter, J. W. Burch, P. W. Majerus, N. Stanford, J. A. Delmez,
C. B. Anderson, and C. A. Weerts “Prevention of Thrombosis in Patients on
Hemodialysis by Low-Dose Aspirin,” N. Engl. J. Med., 301:5677-579, 1979.
Reprinted by permission of the New England Journal of Medicine. )
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and for the people who received placebo

N

nplappla =18
npla(l - ﬁpla) =1

We can use the methods we have developed.
The proportion of all patients who developed thromboses was

. 6+18
p= 19+25~0.55
and so
1 1
A A = p 1 - p + o
spasp—?,xa \/ p( p)(nasp npla) .

1 -1 |
= . — 0. —t — ] = .
\/055(1 055)(19 25) 0.15

B

Finally, we compute z according to

'i" — l__l_ _l__;__l_
pasp ppla 2119 25

Z =
' S prsp = Poia
[0.32 — 0.72| — 0.05
= =233
0.15 -

Table 4-1 indicates that z will exceed 2.3263 in magnitude less than
2 percent of the time if the two samples are drawn' from the same
population. Since the value of z associated with our experiment is
more extreme than 2.3263, it is very unlikely that the two samples
were drawn from a single populai_ion. Therefore, we conclude that
they were not, with P < .02:* In other words, we will conclude that
giving patients low doses of aspirin.while they are receiving chronic
kidney dialysis decreases the likelihood that they will develop throm-
bosis in the shunt used to connect them to the dialysis machine.

.-*The value of z associated with these data, 2.33, is so close to the critical value of
2.3263 associated with P < .02 that it would be prudent to report P < .05 (corresponding
to a critical value of 1.960) because the mathematical models that are used to compute the
table of critical values are only approximations of reality.
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ANOTHER APPROACH TO TESTING NOMINAL
DATA: ANALYSIS OF CONTINGENCY TABLES

The methods we just developed based on the z statistic are perfectly ad-
equate for testing hypotheses when there are only two possible attrib-
" utes or outcomes of interest. The z statistic plays a role analogous to the
t test for data measured on an interval scale. There are many situations,
however, where there are mote than two samples to be compared or
more than two possible outcomes. To do this, we need to develop a test-
ing procedure, analogous to analysis of variance, that is more flexible
than the z test just described. While the following approach may seem
quite different from the one we just used to design the z test for propor-
tions, it is essentially the same.
' To keep things simple, we begin with the problem we just solved,
assessing the efficacy of low-dose aspirin in preventing thrombosis. In
the last section we analyzed the proportion of people in edch of the two
treatment groups (aspirin and placebo) who developed thromboses.
Now we change our emphasis slightly and analyze the number of peo-
ple in each group who developed thrombi. Since the procedure we will
develop does not require assuming anything about the nature of pa-
rameters of the population from which the samples were drawn it is
called a nonparametric method.

Table 5-1 shows the resuits of placebo and aspirin in the experi-
ment, with the number of people in each treatment group who did and
did not develop thromboses. This table is called a 2 X 2 contingency
table. Most of the patients in the study fell along the diagonal in this
table, suggesting an association between the presence of thrombi and
the absence of aspirin treatment. Table 5-2 shows what the experimen-
tal results might have looked like if the aspirin had no effect on throm-
bus formation. It also shows the total number of patients who received
each treatment as well as the total number who did and did not develop
thrombi. These numbers are obtained by summing the rows and
columns, respectively, in the table; these sums are the same as Table
5-1. More patients developed thrombi under each treatment; the differ-
ences in absolute numbers of patients are due to the fact that more pa-
tients received the placebo than aspirin. In contrast to Table 5-1, there
does not seem to be a pattern relating treatment to thrombus formation.

To understand better why most people have this subjective impres-
sion, let us examine where the numbers in Table 5-2 came from. Of the
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Table 5-2 Expected Thrombus Formation If Aspirin
Had No Effect

\

Number of patients

Sample group Developed thrombi Free of thrombi - Treated

Aspirin 10.36 8.64 19

Placebo 13.64 11.36 25
Total 24 o 20 44

44 people in the study 25, or ¥ = 57 percent, received placebo and 19,
or % = 43 percent, received aspirin. Of the people in the study 24, or
% = 55 percent, developed thrombi and 20, or %% = 45 percent, did
not. Now, let us hypothesize that the treatment did not affect the likeli-
hood that someone would develop a thrombus. In this case, we would
expect 55 percent of the 25 patients treated with placebo (13.64 pa-
tients) to develop thrombi and 55 percent of the 19 patients treated with
aspirin (10.36 patients) to develop thrombi. The remaining patients
should be free of thrombi: Note that we compute the expected frequen-
cies to two decimal places (i.e., to the hundredth of a patient); this pro-
cedure is necessary to ensure accurate results in the computation of the
x? test below. Thus, Table 5-2 shows how we would expect the data to
look if 25 patients were given placebo and 19 patients were given as-
pirin and 24 of them were destined to develop thrombi regardless of
how they were treated. Compare Tables 5-1 and 5-2. Do they seem sim-
ilar? Not really; the actual pattern of observations seems quite different
from what we expected if the treatment had no effect.

The next step in designing a statistical procedure to test the hypoth-
esis that the pattern of observations is due to random sampling rather
than a treatment effect is to reduce this subjective impression to a single
number, a test statistic, like F, ¢, or z, so that we can reject the hypothe—
sis of no effect when this statistic is ‘big.”

Before constructing this test statistic, however, let us return to an-
other example, the relationship between type of anesthesia and mortal-
ity following open-heart surgery. Table 5-3 shows the results of our in-
vestigation, presented in the same format as Table 5-1. Table 5-4
presents what the table might look like if the type of anesthesia had no
effect on mortality. Out of 128 people, 110, or "% = 86 percent, lived.
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Table 5-3 Mortality Associated with Open-Heart Surgery

Anesthesia Lived =~ Died - Total no. of cases
Halothane - 53 . 8 ' : 61
Morphine 57 ' 10 _67

Total 110 18 \ 128

If the type of anesthesia had no effect on mortality rate, 86 percent of
the 61 people anesthetized with halothane (52.42 people) and 86 per-
cent of the 67 people anesthetized with morphine (57.58 people) would
be expected to live, the rest dying in each case. Compare Tables 5-3 and
5-4; there is little difference between the expected and observed fre-
quencies in each cell in the table. The observations are compatible with
the assumption that there is no relationship between type of anesthes1a
and mortality. '

The Chi-Square Test Statistic

Now we are ready to design our test statistic. It should describe, with a
single number, how much the observed frequencies in each cell in the
table differ from the frequencies we would expect if there is no rela-
tionship between the treatments and the outcomes that define the rows
and columns of the table. In addition, it should allow for the fact that if
we expect a large number of people to fall in a given cell, a difference
of one person between the expected and observed frequencies is less
important than in cases where we expect only a few people to fall in
the cell. »

Table 5-4 Expected Mortality wnth Open- Heart Surgery
If Anesthesia Did Not Matter

Anesthesia leed . Died Total no. of cases
Halothane 52.42 8.58 o 61
Morphine 57.58 9.42 . _67

Total 110 18 128
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We define the test statistic x? (the square of the Greek letter chi) as

(observed - expected number of individuals in cell)?

x> = sum
~expected number of individuals in cell
The sum is. calculated by adding the results for all cells i in the contin-
gency table. The equivalent mathematical statement is

2
X2=E(0EE)

in which O is the observed number of individuals (frequency) in a given
cell, E is the expected number of individuals (frequency) in that cell,
and the sum is over all the cells in the contingency table. Note that if
the observed frequencies are similar to the expected frequencies, x> will
be a small number and if the observed and expected frequencies differ,
x2 will be a big number.

We can now use the information in Tables 5 1 and 5-2 to compute the
¥? statistic associated with the data on the use of low-dose aspirin to pre-
vent thrombosis in people undergoing chronic dialysis. Table 5-1 gives the
observed frequencies, and Table 5-2 gives the expected frequencies. Thus,

(0 — E* (18 —13.64)> (7 — 11.36)°
¥ = 2 = + -
E 13.64 11.36

(6 — 10.36)> L3 8.64)
10.36 8.64

=17.10

To begin getting a feeling for whether or not 7.10 is “big,” let us com-
pute x? for the data on mortality associated with halothane and mor-
phine anesthesia given in Table 5-3. Table 5-4 gives the expected fre-
quencies, so

, (53 — 5242y L 8- 8.58) L 67— 57.58)
52.42 - 8.58 57.58
(10 — 9.42)
9.42

= 0.09

which is pretty small, in agreement with our intuitive impression that
the observed and expected frequencies are quite similar. (Of course, it
is also in agreement with our earlier analysis of the same data using the
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z statistic in the last section.) In fact, it is possible to show that x* = 72
when there are only two samples and two possible outcomes.

Like all test statistics, x? can take on a range of values even when
there is no relationship between the treatments and outcomes because
of the effects of random sampling. Figure 5-7 shows the distribution of
possible values for x> computed from data in 2 X 2 contingency tables
like those in Tables 5-1 or 5-3. It shows that when the hypothesis of no
relationship between the rows and columns of the table is true, x?
would be expected to exceed 6.635 only 1 percent of the time. Because
the observed value of x2, 7.10 exceeds this critical value of 6.635, we
can conclude that the data in Table 5-1 are unlikely to occur when the
hypothesis that aspirin and placebo have the same effect on thrombus
formation is true. We report that aspirin is associated with lower rates
of thrombus formation (P < .01).

2.0
1.0
0 1.0 2.0 3.0 4,0 ' 5.0

Figure 5-7 The chi-square distribution with 1 degree of freedom. The shaded
area denotes the biggest 5 percent of possible values of the x? test statistic
when there is no relationship between the treatments and observations.
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In contrast, the data in Table 5-3 seem very compatible with the
hypothesis that halothane and morphine produce the same mortality
rates in patients being operated on for repair of heart valves.

Of course, neither of these cases proves that aspirin did or did not
have an effect, or that halothane and morphine did or did not produce
the same mortality rates. What they show is that in one case the pattern
of the observations is unlikely to arise if the aspirin acts like a placebo,
whereas on the other hand the pattern of observations are very likely to
arise if halothane and morphine produce similar mortality rates. Like all
the other procedures we have been using to test hypotheses, however,
when we reject the hypothesis of no association at the 5 percent level,
we are implicitly willing to accept the fact that, in the long run, about 1
reported effect in 20 will be due to random variation rather than a real
treatment effect. ‘

As with all theoretical distributions of test statistics used for test-
ing hypotheses, there are assumptions built into the use of x2. For the
resulting theoretical distribution to be reasonably accurate, the ex-
pected number of individuals in all the cells must be at least 5.* (This
is essentially the same as.the restriction on the z test in the last sec-
tion.) ' '
Like most test statistics, the. distribution of x> depends on the
number of treatments being compared. It also depends on the number
of possible outcomes. This dependency is. quantified in a degrees of
freedom parameter v equal to the number of rows in the table minus 1
times the number of columns in the table minus 1

v=0—-1D-1

where r is the number of rows and ¢ is the number of columns in the
table. For the 2 X 2 tables we have been dealing with so far, v=(2 — 1)
R-1)=1.

As with the z test statistic discussed earlier in this chapter, when
analyzing 2 X 2 contingency tables (v = 1), the value of x> computed
using the formula above and the theoretical x? distribution leads to P
values that are smaller than they ought to be. Thus, the results are bi-
ased toward concluding that the treatment had an effect when the

*When the data do not meet this requirement, one should use the Fisher exact test.
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evidence does not support such a conclusion. The mathematical rea-
son for this problem has to do with the fact that the theoretical x2
distribution is continuous whereas the set of all possible values that
the ¥? test statistics can take on is not. To obtain values of the test
statistic that are more compatible with the critical values computed
from the theoretical x? distribution when v = 1, apply the Yates cor-
rection (or continuity correction) to compute a corrected x? test sta-
tistic according to

N

X = E

This correction slightly reduces the value of x? associated with the con-
tingency table and compensates for the mathematical problem just de-
scribed. The Yates correction is used only when v = 1, that is, for 2 X 2
tables. '

To illustrate the use and effect of the continuity correction, let us
recompute the value of x? associated with the data on the use of low-
dose aspirin to prevent thrombosis in people undergoing chronic dialy-
sis. From the observed and expected frequencies in Tables 5-1 and 5-2,
respectively '

12 1)?
— . — —_ 11 — —
(|18 13.64] 2) +(|7 36| 2)

2:

X

13.64 11.36
1\2 1)2
<l6 —10.36| — 5) (|13 — 8.64] — 5)
+ + =557

10.36 8.64

Note that this value of x?, 5.57, is smaller than the uncorrected value
of x2, 7.10, we obtained before. The corrected. value of x* no longer
exceeds the critical value of 6.635 associated with the greatest 1 per-
cent of possible x? values (i.e., for P < .01). After applying the
continuity correction, x> now only exceeds 5.024, the critical value
that defines the greatest 2.5 percent of possible values (i.e., for
P < .025).
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CHI-SQUARE APPLICATIONS TO EXPERIMENTS
WITH MORE THAN TWO TREATMENTS
OR OUTCOMES

It is easy to generalize what we have just done to analyze the results
of experimerits with more than two treatments or outcomes. The z
test we developed earlier in this chapter will not work for such ex-
periments. »

Recall that in Chapter 3 we demonstrated that women who jog
regularly or engage in long-distance running have fewer menstrual
periods on the average than women who do not participate in this
sport.” Does this physiological change lead women to consult their
physician about menstrual problems? Table 5-5 shows the results of a
survey of the same women discussed in conjunction with Fig. 3-9.
Are these data consistent with the hypothesis that running does not
increase the likelihood that a woman will consult her physician for a
menstrual problem? '

Of the 165 women in the study 69, or “ss = 42 percent, consulted
their physicians for a menstrual problem, while the remaining 96, or
*Ass = 58 percent, did not. If the extent of running did not affect the
likelihood that a woman would consult her physician, we would ex-
pect 42 percent of the 54 controls (22.58 women) to have visited their
physicians, and 42 percent of the 23 joggers (9.62 women) to have
consulted their physicians, and 42 percent of the 88 distance runners
(36.80 women) to have consulted their physicians. Table 5-6 shows
these expected frequencies, together with the expected frequencies of

Table 5-5 Consult Physician for Menstrual Problem

Group Yes No Total
Controls 14 40 54
Joggers 9 14 23
Runners 46 - . 42 _88

Total 69" 96 165

Source: E. Dale D. H. Gerlach, and A. L. Wilhite, “’"Menstrual Dysfunction in
Distance Runners,” Obstet. Gynecol 54:47-53, 1979.

*When this study was discussed in Chapter 3, we assumed the same number of pa-
tients in each-treatment group to simplify the computation. In this chapter we use the
actual number of patients in the study.
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Table 5-6 -Expected Frequencies of vPhysician Consultation
If Running Did Not Matter

Group - Yes No Total
Controls 22.58 ) 31.42 54
Joggers 9.62 13.38 23
Runners 36.80 51.20 _88

Total 69 96 165

women who did not consult their physicians. Are the differences be-
tween the observed and expected frequencies “big?”
To answer this question, we compute the ¥ statistic

, (14 — 2258 (40 — 31.42) L ©0- 9627,

22.58 31.42 9.62
14— 13.38) — 36.80)* (42 — 51.20)°
( 1338 | (46 ~ 36.80 _ ( 5120 _ o o

13.38 36.80 51.20

The contingency table in Table 5-5 has three rows and two colurins,
so the x? statistic has

v=(—-1D(c-1)=0G3 -1 @ -1 =2 degrees of freedom

associated with it. Table 5-7 shows that ¥ will exceed 9.21 less than 1
percent of the time when the difference between the observed and ex-
pected frequencies is due to random variation rather than an effect of the
treatment (in this case, running). Thus, there is a relationship between run-
ning and the chances that a woman will consult her physician about a
menstrual problem (P < .01). Note, however, that we do not'yet know
which group or groups of women account for this difference.
Let us now sum up how to use the x? statistic.

» Tabulate the data in a contingency table.

e Sum the number of individuals in each row and each column
and figure the percentage of all individuals who fall in each row
and column, independent of the column or row in which they
fall. ’ '
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* Use these percentages to compute the number of people that
would be expected in each cell of the table if the treatment had no

effect.

*  Summarize the differences between these expected Jfrequencies
and the observed frequencies by computing X2 If the data form
a 2 X 2 table, include the Yates correction.

*  Compute the number of degrees of freedom associated with the
contingency table and use Table 5-7 to see whether the ob-
served value of X* exceeds what would be expected from ran-
dom variation.

Recall that when the data fell into a 2 X 2 contingency table, all
the expected frequencies had to exceed about 5 for the x? test to be
accurate. In larger tables, most statisticians recommend that the ex-
pected number of individuals in each- cell never be less than 1 and
that no more than 20 percent of them be less than 5. When this is not
the case, the x? test can be quite inaccurate. The problem can be
remedied by collecting more data to increase the cell numbers or by
reducing the number of categories to increase the numbers in each
cell of the table.

Subdividing Contingency Tables

Our analysis of Table 5-6 revealed that there is probably a difference
in the likelihood that the different groups of women will consult their
physicians regarding a menstrual problem, but our analysis did not
isolate which groups of women accounted for this effect. This situa-
tion is analogous to the multiple-comparison problem in analysis of
variance. The analysis of variance will help-decide whether something
is different, but you need to go on to the multiple-comparison proce-
dure to define which group it was. You can do the same thing with a
contingency table.

Looking at the numbers in Table 5-5 suggests that joggers and
runners are more likely to consult their physicians than women in the
control group, but they seem similar to each other.

To test this latter hypothesis, we subdivide the contingency table
to look only at the joggers and runners. Table 5-8 shows the data for
the joggers and runners. The numbers in parentheses are the expected
number of women in each cell. The observed and expected number



142

Table 5-7
Critical Values for the x2 Distribution

CHAPTER &

Probability of greater value P

.50

.25 .

.10

.05

.025

.01

.005

.001

.455

- 1.386
2.366
3.357
4.351

5.348
6.346
7.344
8.343
9.342

10.341
11.340
12.340
13.339
14.339

15.338
16.338
17.338
18.338
19.337

20.337
21.337
22.337
23.337
24.337

25.336
26.336
27.336
28.336
29.336

30.336
31.336
32.336
33.336
34.336

356.336
36.336
37.335

1.323
2.773
4.108
5.385
6.626

7.841
9.037
10.219
11.389
12.649

13.701
14.845
15.984
17117
18.245

19.369
20.489
21.605
22.718
23.828

24.935
26.039
27.141
28.241
29.339

30.435
31.628
32.020
33.711
34.800

35.887
36.973
38.058
39.141
40.223

41.304
42.383
43.462

2.706
4.605
6.251
7.779
9.236

10.645
12.017

13.362°

14.684
15.987

17.275
18.549
19.812
21.064
22.307

23.542
24.769
25.989
27.204
28.412

29.615
30.813

32.007

33.196
34.382

35.563
36.741
37.916
39.087
40.256

41.422
42,585
43.745
44.903
46.059

47.212
48.363
49513

3:841
5.991
7.815
9.488
11.070

12.592
14.067
16.507
16.919
18.307

19.675
21.026
22.362
23.685
24.996

26.296
27.687
28.869
30.144
31.410

32.671
33.924
35.172
36.415

137.652

38.885

40113

41.337
42.557
43.773

44.985
46.194
47.400

48.602
149.802

50.998
52.192
53.384

5.024
7.378
9.348

11.143

12.833

14.449

.16.013

17.5635
19.023
20.483

21.920
23.337
24.736
26.119
27.488

28.845
30.191
31.626
32.852
34.170

35.479
36.781
38.076
39.364
40.646

41.923
43.195
44.461
45.722
46.979

48.232
49.480
50.725
51.966
53.203

54.437
55.668
56.896

6.635

9.210
11.345
13.277
15.086

16.812
18.475
20.090
21.666
23.209

24.725
26.217
27.688
29.141
30.578

32.000
33.409
34.805
36.191
37.566

38.932
40.289
41.638
42.980
44.314

45.642
46.863
48.278

49.588 .

50.892

52.191
53.486
54.776

56.061

57.342
58.619

.69.893

61.162

17.879
10.597
12.838
14.860
16.750

18548
20.278
21.955
23.589
25.188

26.757
28:300
29.819
31.319
32.801

34.267
35.718
37.156
38.582
39.997

41.401
42796
44.181
45,559
46.928

48.290
49.645
50.993
52.336
53.672

55.003
56.328
57.648
58.964
60.275

61.581

- 62.883

64.181

10.828
13.816
16.266
18.467
20.515

22.458
24.322
26.124
27.877
29.588

31.264
32.909
34.528
36.123
37.697

39.252
40.790
42312
43.820
45.315

46.797
48.268
49.728
51.179
52.620

54.052
55.476
56.892
58.301
59.703

61.098
62.487
63.870
65.247
66.619

67.985
69.346
70.703
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Table 5-7
Critical Values for the x? Distribution (continued)

Probability of greater value P
.25 .10 .05 .025 .01 .005 .001

v 0

39 38.335 44.5%50@0 54572 58120 62428 65476 72.055
-40 39.335 45,616 51.80555758 59342 63.691 66.766 73.402

41 40335 46.692 52.949 56.942 60561 64.950 68.053 74.745
42 41335 47766 54.090 58.124 61.777 66.206 69.336 76.084
43 42335 48840 55230 59.304 62930 67.459 70.616 77.419
44 43335 49.913 56.369 60481 64.201 68.710 71.893 78.750
45 44335 50985 57505 61.656 65.410 69.957 73.166 80.077

46 45335 52.056 58641 62.830 66.617 71201 74.437 81.400
47 46335 53.127 59774 64.001 - 67.821 72443 75704 82.720
48 47335 54196 60907 65.171 69.023 73.683 76.969 84.037
49 48335 55265 62.038 66.339 70222 74919 78231 85.351
50 49335 56.334 63.167 67.505 71.420 76.154 79.490 86.661

Source: Adapted from J. H. Zar, Biostatistical Analysis (2nd ed). Prentice-
Hall, Englewood Cliffs, N.J., 1984, pp. 479482, table B.1. Used by permission.

of women in each cell éppear quite similar; since it is a 2 X 2 con-
tingency table, we compute x> with the Yates correction

12
__E__
o~ 5-3)

x2=2-—( 5 :

1\2 o 1\2
(|9 — 11.40| — 5) (|14 - 1“1.60] - E) v

= +
11.40 11.60
oo 1 2 . : 1\2
(|46 — 43.60] — E) <|42 — 44.40| — 5)
2 =79
43.60 T 44.40

which is small enough for us to conclude that the joggers and runners
are equally likely to visit their physicians. Since they are so similar, we
combine the two groups and compare this combined group with the
control group. Table 5-9 shows the resulting 2 X 2 contingency table,
together with the expected frequencies in parentheses. x> for this
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Table 5-8 Physician Consultation among Women Joggers
and Runners*

Group Yes No Total
Joggers 9 (11.40) ' 14 {11.60) 23
Runners 46 (43.60) 42 (44.40) _88
- Total b5 56 111

*Numbers in parentheses are expected frequencies if the amount of running
does not affect physician consultation.

contingency table is 7.39, which exceeds 6.63, the critical value that
defines the upper 1 percent of probable values of x* when there is no re-
lationship between the rows and columns in a 2 X 2 table.

Note, however, that because we have done fwo tests on the same
data, we must use the Bonferroni inequality to adjust the P yalues to ac-
count for the fact that we are doing multiple tests. Since we did two tests,
we multiply the nominal 1 percent P value obtained from Table 5-7 by 2
to obtain 2(1) = 2 percent.” Therefore, we conclude that the joggers and
runners did not differ in their medical consultations from each other but
did differ from the women in the control group (P < .02).

THE FISHER EXACT TEST

The x? test can be used to analyze 2 X 2 contingency tables when each
cell has an expected frequency of at least 5. In small studies, when the
expected frequency is smaller than 5, the Fisher exact test is the appro-

Table 5-9 Physician Consultation among Women Who Dld
and Did Not Run* -

Group Yes No Total
Controls - 14(22.58) 40 (31.42) - 54
Joggers and runners 55 (46.42) 56 (64.58) 111

Total 69 : 96 165

*Numbers in parentheses are expected frequencies of physician consultation
if whether a woman ran or did not affect the likelihood of her consulting a
physician for a menstrual problem.

*We could also use a Holm procedure to account for multiple comparisons.
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priate procedure. This test turns the liability of small sample sizes into a
benefit. When the sample sizes are small, it is possible to simply list all
the possible arrangements of the observations, then compute the exact
probabilities associated with each possible arrangement of the data. The
total (two-tailed) probability of obtaining the observed data or more ex-
treme patterns in the data is the P value associated with the hypothesis
that the rows and columns in the data are independent.

The Fisher exact test begins with the fact that the probability of ob-
serving any given pattern in the 2 X 2 contingency table with the ob-
served row and column totals in Table 5-10 is

R,IR,!C,!C,!

N
p=—_"
0,,10,,10,,10,,!

where Oy, Oy, Oy, and Oy, are the observed frequencies in the four cells
of the contingency table, C; and C, are the sums of the two columns, R,
and R, are the sums of the two rows, N is the total number of observa-
tions, and the exclamation mark “!” indicates the factorial operator.*
Unlike the x? test statistic, there are one- and two-tailed versions
of the Fisher exact test. Unfortunately, most descriptions of the Fisher
exact test simply describe the one-tailed version and many computer
programs compute the one-tailed version without clearly identifying it
as such. Because many researchers do not recognize this issue, results
(i.e., P values) may be reported for a single tail without the researchers
realizing it. To determine whether or not investigators recognized
whether they were using one- or two-tailed Fisher exact tests, W. Paul
McKinney and colleagues’ examined the use of the Fisher exact test in

Table 5-10 Notation for the Fisher Exact Test

) ) Row Totals
o11 O‘l 2 R1
h Oy Oy, R,
Column Totals - c, C, _ N

*The definition nlis n!=@m)n—D(n-2) - - - @)(1);eg,5!=5-4.3.2.1,
W, P. McKinney, M. J. Young, A. Harta, and M. B. Lee, “The Inexact Use of
Fisher’s Exact Test in Six Major Medical Journals,” JAMA, 261:3430—-3433, 1989.
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Table 5-11 Reporting of Use of Fisher Exact Test in the
New England Journal of Medicine and The Lancet

Test Identified?

Group Yes No Totals

New England Journal of Medicine 1 8 9

The Lancet 10 4 14
Totals 11 12 23

papers published in the medical literature to see whether or not the au-
thors noted the type of Fisher exact test that was used. Table
5-11 shows the data for the two journals, New England Journal of
Medicine and The Lancet. Because the numbers are small, x? is not an
appropriate test statistic. From the equation above, the probability of
obtaining the pattern of observations in Table 5-11 for the given row
and column totals is

9114!111112!
23!
118!10!4!

= .00666

Thus, it is very unlikely that this particular table would be observed. To
obtain the probability of observing a pattern in the data this extreme or
more extreme in the direction of the table, reduce the smallest observa-
tion by 1, and recompute the other cells in the table to maintain the row
and column totals constant.

In this case, there is one more extreme table, given in Table 5-12.
This table has a probability of occurring of

9114111112!
23!

= =0002
P= oz ~ 00

(Note that the numerator only depends on the row and column totals as-
sociated with the table, which does not change, and so only needs to be
computed once.) Thus, the one-tailed Fisher exact test yields a P value
of P = .00666 + .00027 = .00695. This probability represents the prob-
ability of obtaining a pattern of observations as extreme or more ex-
treme in one direction as the actual observations in Table 5-11.
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Table 5-12 More Extreme Pattern of Observations in Table
5-11, Using Smallest Observed Frequency (in This Case, 1)

Test Identified?

Group Yes " No Totals

New England Journal of Med/cme 0 9 9

The Lancet 1 3 14
Totals 11 12 23

To find the other tail, we list all the remaining possible patterns in
the data that would give the same row and column totals. These possibili-
ties, together with the associated probabilities, appear in Table 5-13.
These tables are obtained by taking each of the remaining three elements
in Table 5-11 one at a time and progressively making it smaller by one,
then eliminating the duplicate tables. Two of these tables have probabili-
ties at or below the probability of obtaining the original observations,
.00666: the ones with probabilities of .00242 and .00007. These two ta-
bles constitute the “other” tail of the Fisher exact test. There is a total
probability of being in this table of .00242 -+ .00007 = .00249.* Thus,
the total probability of obtaining a pattern of observations as extreme or
more extreme than that observed is P = .00695 + .00249 = .00944, and
we conclude there is a significant difference in the correct presentation of
the Fisher exact test in the New England Journal of Medicine and The
Lancet (P'=.009). Indeed, it is important when reading papers that use
the Fisher exact test to make sure the authors know what they are doing
and report the results appropriately. .

Let us now sum up how to do the Fisher exact test.

* Compute the probability associated with the observed data.

* Identify the cell in the contingency table with the smallest fre-
quency. '

* Reduce the smallest element in the table by 1, then compute the
elements for the other three cells so that the row and column
sums remain constant.

*Note that the two tails have different probabilities; this is generally the case. The
one exception is when either the two rows or two columns have the same sums, in which
case the two-tail probability is simply twice the one-tail probability. Some books say that
the two-tail value of P is always simply twice the one-tail value. This is not correct unless
the row or column sums are equal.
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Table 5-13 Other Patterns of Observations in Table 5-11

with the Same Row and Column Totals

Totals Totals

2 7 9 6 3 9

. : S 5 14 5 ) 14

Totals 11 12 23 Totals 11 12 23
P = .05330 P =.12438

Totals Totals

3 - 6 9 7 2 9

8 6 14 _4 10 14

Totals 1 12 23 Totals 1 12 23
P =.18657 P = .02665

Totals Totals

4 5 9 8 1 9

7 1 14 3 n 14

Totals 11 12 23 - Totals 1" 12 23
P = 31983 \ P = 00242

Totals Totals

5 4 9 9 0 9

6 8 14 2 12 14

Totals 11 12 23 Totals 11 12 23
P=.27985 " P = .00007

*  Compute the probability associated with the new table.
* Repeat this process until the smallest element is zero.

*  List the remaining tables by repeating this process for the other
three elements.” List each pattern of observations only once.

»  Compute the probabilities associated with each of these tables.

* Add all the probabilities together that are equal to or smaller

than the probability associated with the observed data.

This probability is the two-tail probability of observing a pattern in the
data as extreme or more extreme than observed. Many computer

*Many of these computations can be avoided: see Appendix A.
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programs show P values for the Fisher exact test, without clearly indi-
cating whether they are one- or two-tail values. Make sure that you
know which value is being reported before you use it in your work; the
two-tailed P value is generally the one you want.

MEASURES OF ASSOCIATION BETWEEN TWO
NOMINAL VARIABLES*

In addition to testing whether there are significant differences between
two rates or proportions, people often want a measure of the strength of
association between some event and different treatments or conditions,
particularly in clinical trials and epidemiological studies. In a prospec-
tive clinical trial, such as the study of thrombus formation in people
treated with aspirin or placebo discussed earlier in this chapter (Table 5-
1), investigators randomly assign people to treatment (aspirin) or control
(placebo), then follow them to see whether they develop a thrombus or
not. In that example, 32 percent (6 out of 19) of the people receiving as-
pirin developed thrombi and 72 percent (18 out of 25) receiving placebo
developed thrombi. These proportions are estimates of the probability of
developing a thrombus associated with each of these treatments; these
results indicate that the probablity of developing a thrombus was cut by
more than half by treatment with aspirin. We will now examine different
ways to quantify this effect, relative risk and the odds ratio.’

Prospective Studies and Relative Risk

We quantify the size of the association between treatment and outcome
with the relative risk, RR, which is defined as

_ Probability of event in treatment group

Probability of event in control group

*In an introductory course, this section can be skipped without loss of continuity.

fAnother way to quantify this difference is to present the absolute risk reduction,
which is simply the difference of the probability of an event (in this case, a thrombus) with-
out and with the treatment, .72 — .32 = .40. Treatment with aspirin reduces the probablity of
a thrombus by .40. An alternative approach is to-present the number needed to treat, which is
the number of people that would have to be treated to avoid one event. The number needed to
treat is simply 1 divided by the absolute risk reduction, in this case 1/.40 = 2.5. Thus, one
would expect to avoid one thrombotic event for about every 2.5 people treated (or, if you pre-
fer dealing with whole people, 2 events for every 5 people treated).
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For the aspirin trial,

poy 032
RR = Do — =22 _ 944
)

The fact that the relative risk is less than 1 indicates that aspirin reduces
the risk of a thrombus. In clinical trials evaluating: treatments against
placebo (or standard treatment, when it would be unethical to adminis-
ter a placebo), a relative risk less than 1 indicates that the treatment
leads to better outcomes.

In an epidemiological study, the probability of an event among people
exposed to some potential toxin or risk factor is compared to people who
are not exposed. The calculations are the same as for clinical trials.* Rela-
tive risks gréater than 1 indicate that exposure to the toxin increases the
risk of disease. For example, being married to a smoker is associated with
a relative risk of heart disease in nonsmokers of 1.3," indicating that non-
smokers married to smokers are 1.3 times more likely to die from heart
disease as nonsmokers married to nonsmokers (and so not breathing sec-
ondhand smoke at home).

Table 5-14 shows the general layout fora calculatlon of relative risk;
it is simply a 2 X 2 contingency table. The probability of an event in the
treatment group (also called the experimental event rate) is a/(a + b) and
the probability of an event in the treatment group (also called the control
event rate) is c/(c + d). Therefore, the formula for relative risk is

_al(a+b)
B cl(c +d)

*In clinical trials and epidemological studies one often wants to adjust for other
so-called confounding variables that could be affecting the probability of an event. It is
possible to account for such variables using multivariate techniques using logistic re-
gression or the Cox proportional hazards model. For a discussion of these issues, see
S. A. Glantz and B. K. Slinker, Primer of Applied Regression and Analysis of Variance,
2 ed, New York, McGraw-Hill, 2000, chap. 12, “Regression with a Qualitative Depen-
dent Variable.”

1S. A. Glantz and W. W. Parmley. “Passive Smoking and Heart Disease: Epidemi-
ology, Physiology, and Biochemistry,” Circulation, 83:1-12, 1991. S. Glantz and
W. Parmley. Passive Smoking and Heart Disease: Mechanisms and Risk, JAMA,
273:1047-1053, 1995.
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Table 5-14 Arrangement of Data to Compute Relative Risk

Number of people

Sample group Disease No disease Total
Treated (or exposed

to risk factor) a b . a+b
Control (or not exposed '

to risk factor) c d c+d

Totat a+c b+d

Using the results of the aspirin trial in Table 5-1, we would compute

_6/(6+18) 032
13/(13+7) 072

0.44

This formula is simply a restatement of the definition presented above.

The most common null hypothesis that people wish to test related
to relative risks is that the relative risk equals 1 (i.e., that the treatment
or risk factor does not affect event rate). Although it is possible to test
this hypothesis using the standard error of the relative risk, most people
simply apply a x? test to the contingency table used to compute the rel-
ative risk.* -

To compute a relative risk, the data must be collected as part of a
prospective study in which people are randomized to treatment or
control or subjects in an epidemiological study' are followed forward
in time after they are exposed to the toxin or risk factor of interest. It
is necessary to conduct the study prospectively to estimate the ab-
solute event rates in people in the treatment (or exposed) and control
groups. ’

Such prospective studies are often difficult and expensive to -do,
particularly if it takes several years for events to occur after treatment
or exposure. It is, however, possible to conduct a similar analysis retro-
spectively based on so-called case-control studies.

*Traditionally direct hypothesis testing of relative risks is done by examining confi-
dence intervals; see Chap. 7.
tProspective epidemiological studies are also called cohort studies.
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Case-Control Studies and the Odds Ratio

Unlike prospective studies, case-control studies are done after the
fact. In a case-control study, people who experienced the outcome 6f
interest are identified and the number exposed to the risk factor of
interest are counted. These people are the cases. You then identify
people who did not experience the outcome of interest, but are simi-
lar to the cases in all relevant ways and count the number that were
exposed to the risk factor. These people are the controls. (Often in-
vestigators include more than one control per case in order to in-
crease the sample size.) Table 5-15 shows the layout for data from a
case-control study.

This information can be used to compute a statistic similar to the
relative risk known as the odds ratio. The odds ratio, OR, is defined as

Odds of exposure in cases

OR Odds of exposure in controls

The percentage of cases (people with the disease) exposed to the risk
factor is a/(a + c) and the percentage of cases not exposed to the risk
factor is ¢/(a + c). (Note that the denominators in each case are appro-
priate for the numerators; this situation would not exist if one was using
case-control data to compute a relative risk.) The odds of disease in the
cases is the ratio of these two percentages.

\ +
Odds of disease in cases = M =4
cllat+c) ¢

Table 5-15 Arrangement of Data to Compute Odds Ratio

Number of People

. Disease No disease
Sample group ) “cases” “controls”

Exposed to risk factor (or treatment) a
Not exposed to risk factor {or treatment) c
Total a+c  b+d
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Likewise, the odds of disease in the controls is

bi(b +d)

Odds of disease in controls = m =

b
d

Finally, the odds ratid is

Because the number of controls depends on how the investigator
designs the study (and so b and d in Table 5-15), you cannot use data
from a case-control study to compute a relative risk. In a case-control
study the investigator decides how many subjects with and without the
disease will be studied. This is the opposite of the situation in prospec-
tive studies (clinical trials and epidemiological cohort studies), when
the investigator decides how many subjects with and without the risk
factor will be included in the study. The odds ratio may be used in both
case-control and prospective studies, but must be used in case-control
studies. :

While the odds ratio is distinct from the relative risk, the odds ratio
is a reasonable estimate of the relative risk when the number of people
with the disease is small compared to the number of people without the
disease.”

As with the relative risk, the most common null hypothesis that
people wish to test related to relative risks is that the odds ratio equals 1
(i.e., that the treatment or risk factor does not affect the event rate).
While it is possible to test this hypothesis using the standard error of
the odds ratio, most people simply apply a x? test to the contingency
table used to compute the odds ratio.”

*In this case, the number of people who have the disease, a and ¢, is much smaller
than the number of people without the disease, b and d, soa + b=~ bandc + d =~ d. As
aresult

cllc+dy cld be

TDirect hypothesis testing regarding odds ratios is usually done with confidence in-
tervals; see Chapter 7. )
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Passive Smoking and Breast Cancer

Breast cancer is the second leading cause of cancer death among
women (behind lung cancer). Smoking causes lung cancer because of
the cancer-causing chemicals in the smoke that enter the body and
some of these chemicals appear in breast milk, indicating that they
reach the breast. To examine whether exposure to secondhand tobacco
smoke increased the risk of breast cancer in lifelong nonsmokers, John-
son and colleagues™ conducted a case-control study using cancer reg-
istries to identify premenopausal women with histologically confirmed
invasive primary breast cancer. They contacted the women and inter-
viewed them about their smoking habits and exposure to secondhand
smoke at home and at work. They obtained a group of controls who did
not have breast cancer, matched by age group, from a mailing to
women using lists obtained from the provincial health insurance author-
ities. Table 5-16 shows the resulting data.

The fraction of women with breast cancer (cases) who were ex-
posed to secondhand smoke is 50/(50 + 14) = 0.781 and the fraction
of women with breast cancer not exposed to secondhand smoke was
-14/(50 + 14) = 0.218, so the odds of the women with breast cancer
having been exposed to secondhand smoke is 0.781/0.218 = 3.58. Sim-
ilarly, the fraction of controls exposed to secondhand smoke is
43/(43 + 35) = 0.551 and the fraction not exposed to secondhand
smoke is 35/(43 + 35) = 0.449, so the odds of the women without

Table 5-16 Passive Smoking and Breast Cancer

Number of People

Cases
Sample group (breast cancer) Controls
Exposed to secondhand smoke 50 43
Not exposed to secondhand smoke 14 35
Total ’ 64 78

*K. C. Johnson, J. Hu, Y. Mao, and the Canadian Cancer Registries Epidemiology
Research Group, “Passive and Active Smoking .and Breast Cancer Risk in Canada,
1994-1997,” Cancer Causes Control, 11:211--221, 2000.
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breast cancer having  been exposed to secondhand smoke is
0.551/0.449 = 1.23. Finally, the odds ratjo of breast cancer associated
with secondhand smoke exposure is

Odds of secondhand smoke exposure
' in women with breast cancer 3.58
R p— - = = .
o Odds of secondhand smoke 1.23 291

exposure in controls

Alternatively, we could use the direct formula for odds ratio and compute

Based on this study, we conclude that exposure to secondhand smoke
increases the odds of having breast cancer by 2.91 times among this
population. A x? analysis of the data in Table 15-16 shows that this dif-
ference is statistically significant (P = .007).

We now have the tools to analyze data measured on a nominal
scale. So far we have been focusing on how to demonstrate a difference
and quantify the certainty with which we can assert this difference or
effect with the P value. Now we turn to the other side of the coin: What
does it mean if the test statistic is not big enough to reject the hypothe-
sis of no difference?

PROBLEMS

5-1 Because local dental anesthetic administration is often accompanied by pa-
tient anxiety and other adverse sequelae, Timothy Bishop (“High Frequency
Neural Modulation in Dentistry,” J. Am. Dent. Assoc., 112:176-177, 1986)
studied the effectiveness of high frequency neural modulation (similar to
that used in physical therapy to control chronic pain) to prevent pain during

Treatment received

' Active ‘ Placebo

Effective analgesia ‘ 24 3
Ineffective analgesia 6 17
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5-2

5-3

CHAPTER 5

a variety of dental procedures, including restorations and tooth extractions.
People were given either the electrical stimulation or simply had the inac-
tive device attached as though it were being used (a placebo control). Nei-
ther the dentist nor the patient knew whether or not the neural modulator
was turned on. Do the following data suggest that high-frequency neural
modulation is an effective analgesic? Use both x* and z statistics.
Adolescent suicide is commonly associated with alcohol misuse. In a
retrospective study involving Finish adolescents who committed suicide,
Sami Pirkola and colleagues (“Alcohoi-Related Problems Among Ado-
lescent Suicides in Finland,” Alcohol Alcohol. 34:320-328, 1999) com-
pared situational factors and family background between victims who
abused alcohol and those who did not. Alcohol use was determined by
family interview several months following the suicide. Adolescents with
alcohol problems, ranging from mild to severe, were classified together
in a group called SDAM (Subthreshold or Diagnosable Alcohol Misuse)
and compared to victims with no such reported alcohol problems. Some
of Pirkola’s findings appear below. Use these data to identify the charac-
teristics of SDAM suicides. Are these factors specific enough to be of
predictive value in a specific adolescent? Why or why not?

Not in' SDAM

SDAM group group .
Factor (n=44) . {n = 62)
Violent death (shooting, 32 51
hanging, jumping, traffic) -
Suicide under influence 36 25
of alcohol
Blood alcohol concentration 17 3
(BAC) = 150 mg/dL
Suicide during weekend 28 26
Parental divorce 20 15
Parental violence 14 5
Parental alcohol abuse 17 12
Paternal alcohol abuse 15 -9
Parental suicidal behavior 5 3
Institutional rearing . 6 - -2

The 106 suicides analyzed in Prob. 5-2 were selected from 116 suicides
that occurred between April 1987 and March 1988. Eight of the ten sui-
cides not included in the study were due to lack of family interviews.
Discuss the potential problems, if any, associated with these exclusions. -
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' 5-4 Major depression can be treated with medication, psychotherapy or a

combination of the two. M. Keller and colleagues (“A Comparison of
Nefazodone, the Cognitive Behavioral-Analysis System of Psy-
chotherapy, and Their Combination for the Treatment of Chronic De-
pression,” N. Engl. J. Med., 342:1462—1470, 2000) compared the effi-
cacy of these approaches in outpatients diagnosed with a chronic
major depressive disorder. Depression was diagnosed using the 24-
item Hamilton Rating Scale for Depression, where a higher score in-
dicates more severe depression. All subjects began the study with a
score of at least 20. The investigators randomly assigned patients who
met study criteria to the three groups—medication (nefazodone), psy-
chotherapy, or both—for 12 weeks then measured remission, defined
as having a follow-up score of 8 or less after 10 weeks of treatment.
The responses of the people they studied fell into the following cate-

~ gories.
Treatment ~ Remission No remission
Nefazodone - " 36 131
Psychotherapy 41 132

Nefazodone and psychotherapy 75 104

Is there any evidence that the different treatments produced different re-
sponses? If so, which one seems to work best?

Public health officials often investigate the source of widespread outbreaks
of disease. Agnes O’Neil and coworkers (“A Waterborne Epidemic of
Acute Infectious Non-Bacterial Gastroenteritis in Alberta, Canada.” Can. J.
Public Health, 76:199-203, 1985) reportéd on an outbreak of gastroenteri-
tis in a small Canadian town. They hypothesized that the source of contami-
nation was the municipal water supply. They examined the association be-
tween amount of water consumed and the rate at which people got sick.
What do these data suggest? '

Water consumption, glasses per day =~ Number ill  Number not ill
Less than 1 39 121
1t04 265 258

5 or more ‘ 265 146
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5.7

CHAPTER b5

In general, the quality of a research project is higher and the applicabil-
ity of data to a specific question is higher if the data are collected after
the research is planned. Robert Fletcher and Suzanne Fletcher (“Clinical
Research in General Medical Journals: A 30-Year Perspective,” N. Engl.
J. Med., 301:180-183, 1979, used by permission) studied 612 articles
randomly selected from the Journal of the American Medical Associa-
tion, The Lancet, and New England Journal of Medicine to see whether
the authors collected their data before or after planning the research.
They found:

1946 1956 1966 1976

- No. of articles examined 151 149 157 155
Data’collection, %: . ‘

After research planned 76 7 49 44

Before research planned 24 29 51 56

Estimate the certainty with which these percentages estimate the true
percentage of articles in which the data were collected before the re-
search was planned. Have thmgs changed over time? If so, when? Was
the change (if any) for the better or the worse? '

Dioxin is one of the most toxic synthetic environmental contaminants.
An explosion at a herbicide plant in Sevaso, Italy in 1976 released
large amounts of this long-lasting contaminant into the environment,
Because exposure to dioxin during development is known to be dan-
gerous, researchers have been carefully following the health status of
exposed people and their children in Sevaso and surrounding areas.
Peter Mocarelli and colleagues ("Paternal Concentrations of Dioxin
and Sex Ratio of Offspring,"” The Lancet, 355:1858—1863, 2000) mea-
sured the serum concentration of dioxin in potentially exposed parents
and analyzed the number of male and female babies born after 1976.
They found that when both parents were exposed to greater that 15
parts per trillion (ppt) of dioxin the proportion of girl babies born was
significantly increased compared to couples not exposed to this
amount of dioxin. Mocarelli and colleagues also investigated whether
there were differences in the proportion of female babies born if only
one parent was exposed to greater than 15 ppt of dioxin and whether
the sex of the parent (mother or father) made a difference. Based on
numbers presented below, are there differences in the proportion of



HOW TO ANALYZE RATES AND PROPORTIONS 159

5-8

female babies born when only one parent is exposed to greater than 15
ppt of dioxin?

Parental exposure to dioxin Female babies Male babies

Father exposed; ’ 105 81
mother unexposed

Father unexposed; -100 120

mother exposed

Fabio Lattanzi and coworkers (“Inhibition of Dipyridamole-Induced Is-
chemia by Antiangirial Therapy in Humans: Correlation with Exercise
Electrocardiography,” Circulation, 83:1256—1262, 1992) wished to
compare the ability of electrocardiography (in which the electrical sig-
nals produced by the heart) and echocardiography (in which pictures of

. the heart are obtained with sound waves) to detect inadequate oxygen

supply (ischemia) to the heart of people with heart disease. To obtain the
electrocardiographic test (EET), they had the people exercise to increase
their heart rate until they developed chest pain or had abnormalities on
their electrocardiogram indicating ischemia. To obtain the echocardio-
graphic test (DET), they watched the heartbeat after increasing heart rate
with the drug dipyridamole. They compared people receiving therapy
for their heart disease in separate experiments. The results they obtained
were:

On therapy
Positive DET test Negative DET test
Positive EET Test .. 38 2
Negative EET Test 14 3
Off therapy
Positive DET test Negative DET test
Positive EET Test 21 6
Negative EET Test 16 14

Was there a different response between the two tests in either group of
patients?
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David Sackett and Michael Gent (“Controversy in Counting and
Attributing Events in Clinical Trials,” N. Engl. J. Med., 301:
1410-1412, 1979, used by permission) took note of two important
points with regard to the study described in Prob. 5-5: (1) “available
for follow-up” patients had to be discharged alive and free of stroke
after their hospitalization; (2) this procedure excluded 15 surgically
treated patients (5 who died and 10 who had strokes during or shortly
after their operations) but only 1 medically treated patient. Including
these 16 patients in the data from the previous problem yields the
following result.

Recurrent ischemia, stroke, or
death, no. of patients

Therapy Yes v No
Surgical ' 58 36

Medical 54 19

Does including these patients change the conclusions of the trial? If so,
should the trial be analyzed excluding them (as in Prob. 5-5)-or includ-
ing them (as in this problem)? Why?

The chance of contracting disease X is 10 percent, regardless of whether
or not a given individual has disease A or disease B. Assume that you
can diagnose all three diseases with perfect accuracy and that in the en-
tire population 1000 people have disease A and 1000 have disease B.
People with X, A, and B have different chances of being hospitalized.
Specifically, 50 percent of the people with A, 20 percent of the people
with B, and 40 percent of the people with X are hospitalized. Then:

*  Out of the 1000 people with A, 10 percent (100 people) also have X;
50 percent (50 people) are hospitalized because they have A. Of the
remaining 50 (who also have X), 40 percent (20 people) are hospital-
ized because of X. Therefore, 70 people will be hospitalized with
both A and X.

¢ Out of the 900 people with A but not X, 50 percent are hospitalized
for disease A (450 people).

* Out of the 1000 with B, 10 percent (100 people) also have X; 20 per-
cent (20 people) are hospitalized because of B, and of the remaining
80, 40 percent. (32 patients) are hospitalized because they have X.
Thus, 52 people with B and X are in the hospital.
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* Of the 900 with B but not X, 20 percent (180 people) are hospital-
ized because they have disease B.

A hospital-based-investigator will encounter these patients in the hospi-
tal and observe the following relationship:

Disease X No disease X
Disease A ' 70 450
Disease B 52 180

Is there a statistically significant difference in the chances that an individ-
ual has X depending on whether or not he has A or B in the sample of pa-
tients the hospital-based investigator will encounter? Would the investi-
gator reach the same conclusion if she could observe the entire

" population? If not, explain why. (ThlS example is from D. Mainland,

“The Risk of Fallacious Conclusions from Autopsy Data on the Inci-
dence of Diseases with Applications to Heart Disease,” Am. Heart J.,
45:644-654, 1953.) )

Cigarette smoking is associated with increased incidence of many
types of cancers. Jian-Min Yuan and colleagues (“Tobacco Use in Re-
lation to Renal Cell Carcinoma.” Cancer Epidemiol. Biomarkers Prev.
7:429-433, 1998) wanted to investigate whether cigarette smoking
was also associated with increased risk of renal cell cancer. They re-
cruited patients with renal cell cancer from the Los Angeles County
Cancer Surveillance Program to serve as cases in a retrospective case-
control study. Control subjects without renal cell cancer were matched
on sex, age (within 5 years), race, and neighborhood of residence to
each case subject. After recruiting a total of 2314 subjects for the
study, Yuan and colleagues visited subjects in their homes and inter-
viewed them about their smoking habits, both past and present. What
effect does smoking c1garettes have on the risk of developing renal cell
cancer?

Number of people

Renal cell cancer No cancer

Ever smoked cigarettes 800 713
Never smoked cigarettes ' 357 ’ 444
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5-12 Yuan and colleagues also collected information from subjects who had
quit smoking. Is there any evidence that stopping smoking reduces risk
of developing renal cell cancer compared to current smokers?

Number of people

Renal cell cancer No cancer
More than 20 years since quitting 169 177
Current smokers 337 262

5-13 Many postmenopausal women are faced with the decision of whether
they want to take hormone replacement therapy or not. Benefits of hor-
mone replacement include decreased risk of cardiovascular disease and
osteoporosis. However, hormone replacement therapy has also been asso-
ciated with increased risk of breast cancer and endometrial cancer.
Francine Grodstein and colleagues (“Postmenopausal Hormone Therapy
and Mortality.” N. Engl. J. Med., 336: 1769—-1775, 1997) investigated the
relationship between hormone replacement therapy and overall mortality
in a large group of postmenopausal women. The women used in this
study were selected from a sample of registered nurses participating in
the Nurses’ Health Study. This prospective study has been tracking the
health status of a large group of registered nurses since 1976, updating in-
formation every 2 years. Women became eligible for Grodstein’s study
when they became menopausal and were included as long as they did not
report a history of cardiovascular disease or cancer on the original 1976
questionnaire. Cases were those women who died between 1976—1994,
and for each case, up to 10 control women were selected. Control women
were those alive at the time of subjects, death, matched on age and age at
menopause. Is there any evidence that the risk of death differs in women
who were identified as currently using hormone replacement therapy?

Number of people

Decreased . Alive

Currently using hormone
replacement therapy i 574 8483
Ever used hormone replacement therapy 2051 17,520
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5-14 Ts there an increase in risk of death in women who reported past hor-
mone replacement therapy use compared to women who never used it?

Number of people

Deceased Alive

Past use of hormone

replacement therapy 1012 8621
Never used hormone

replacement therapy 2051 17,520




Chapter 6

What Does “Not
Slgmﬁcant” Really Mean?

Thus far, we have used statistical methods to reach conclusions by see-
ing how compatible the observations were with the hypothesis that the
treatment had no effect (the null hypothesis). When the data were un-
likely to occur if this hypothesis were true, we rejected it and concluded
that the treatment had an effect. We used a test statistic (F, ¢, g, ¢', z, or
X%) to quantify the difference between the actual observations and those
we would expect if the hypothesis of no effect were true, We concluded
that the treatment had an effect if the value of this test statistic was
bigger than 95 percent of the values that would occur if the treatment
had no effect. When this is so, it is common for medical investigators to
report a statistically significant effect. On the other hand, when the test
statistic. is not big enough to reject the hypothesis of no treatment
effect, investigators often report no statistically significant difference
and then discuss their results as if they had proved that the treatment
had no effect. All they really did was fail to demonstrate that it did
have an effect. The distinction between positively demonstrating that a

164
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treatment had no effect and failing to demonstrate that it does have an
effect is subtle but very important, especially in the light of the small
numbers of subjects included in most clinical studies.*

As already mentioned in our discussion of the ¢ test, the ability to
detect a treatment effect with a given level of confidence depends on
the size of the treatment effect, the variability within the population,
and the size of the samples used in the study. Just as bigger samples
make it more likely that you will be able to detect an effect, smaller
sample sizes make it harder. In practical terms, this means that studies
of therapies that involve only a few subjects and fail to reject the
hypothesis of no treatment effect may arrive at this result because the
statistical procedures lacked the power to detect the effect because of a
too small sample size, even though the treatment did have an effect.
Conversely, considerations of the power of a test permit you to compute
the sample size needed to detect a treatment effect of given size that
you believe is present. .

AN EFFECTIVE DIURETIC

Now, we make a radical departure from everything that has preceded:
we assume that the treatment does have an effect. -

Figure 6-1 shows the same population of people we studied in
Fig. 4-4 except that this time the drug given to increase daily urine
production works. It increases the average urine production for mem-
bers of this population from 1200 to 1400 mL/day. Figure 6-1A shows
the distribution of values of daily urine production for all 200 mem-
bers of the population under control conditions, and Fig. 6-1B shows
how much urine every member of the population on the diuretic
would produce.

Of caurse, an investigator cannot observe all members of the popu-
lation, so he or she selects two groups of 10 people at random, gives
one group the diuretic and the other a placebo, and measures their daily
urine-production. Figure 6-1C shows what the investigator would see.

*This problem is particularly encountered in small_clinical studies in which there
are no “failures” in the treatment group. This situation often leads to overly optimistic
assessments of therapeutic efficacy. See J. A. Hanley and A. Lippman-Hand, “If Nothing
Goes Wrong, Is Everything All Right? Interpretmg Zero Numerators,” JAMA 249:
1743-1745, 1983. :
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Figure 6-1 Daily urine production in a population of 200 people while they are

taking a placebo and while they are taking an effective diuretic that increases
urine production by 200 mL/day on the average.- Panels A and B show the spe-
cific individuals selected at random for study. Panel C shows the results as they
would appear to the investigator. t= 2.447 for these observations. Since the criti-
cal value of t for P<.05 with 2{10 ~ 1) = 18 degrees of freedom is 2.101, the in-
vestigator would probably report that the diuretic was effective.
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The people receiving a placebo produced an average of 1180 mL/day,
and those receiving the drug produced an average of 1400 mL/day. The
standard deviations of these two samples are 144 and 245 mL/day, re-
spectively. The pooled estimate of the population variance is

= l/z(sgr + sg,a) = 1/2(245% + 144%) = 40,381 = 2012
The value of ¢ associated with these observations is

Xi =Xy _ 1400 — 1180 .

\/(sz/nd,) + (s*/ny,)  V(201%/10) + (2012/10)

which exceeds 2.101, the value that defines the most extreme 5 percent
of possible values of the ¢ statistic when the two samples are drawn
from the same population. [There are 2(n — 1) = 18 degrees of free-
dom.] The investigator would conclude that the observations are not
consistent with the assumption that two samples came from the same
population and report that the drug 1ncreased urine production. And
he/she would be right.

Of course, there is nothing special about the two random samples of
people selected for the experiment. Figure 6-2 shows two more groups
of people selected at random to test the drug, together with the results as
they would appear to the investigator. In this case, the mean urine pro-
duction was 1216 mL/day for the people given the placebo and 1368
mlL/day for the people taking the drug. The standard deviation of urine
production in the two groups was 97 and 263 mlL/day, respectively,
so the pooled estimate of the variance is /2 (972 + 236%) = 1982. The
value of ¢ associated with these observations is

1368 - 1216
V(198%/10) + (1982/10)

which is less than 2.101. Had the investigator selected these two groups
of people for testing, he/she would not have obtained a value of ¢ large
enough to reject the hypothesis that the drug had no effect; it would
probably be reported “no significant difference.” If the investigator went
on to conclude that the drug had no effect, he/she would be wrong.
Notice that this is a different type of error from that discussed
in Chapters 3 to 5. In the earlier chapters we were concerned with
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Figure 6-2 There is nothing special about the two random samples shown in
Fig. 6-1. This illustration  shows another random sample of two groups of 10
people each selected at random to test the diuretic and the results as they
would appear to the investigator. The value of t associated with these observa-
tions is only 1.71, not great enough to reject the hypothesis of no drug effect
with P<0.05, that is, a« = 0.05. If the investigator reported the drug had no
effect, he/she would be wrong. )

rejecting the hypothesis of no.effect when it was true. Now we are con-
cerned with not rejecting it when it is not true.

What are the chances of making this second kind of error?

Just as we could repeat this experiment more than 10%’ times when the
drug had no effect to obtain the distribution of possible values of ¢
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Figure 6-3 (A) The distribution of values of the t statistic computed from 200
experiments that consisted of drawing two samples of size 10 each from a single
population; this is the distribution we would expect if the diuretic had no effect on
urine production. {Compare with Fig. 4-5A.) {B) The distribution of t values from
200 experiments in which the drug increased average urine production by
200 ml/day. t= 2.1 defines the most extreme 5 percent of the possible values of
t when the drug has no effect; 111 of the 200 values of t we would expect to
observe from our data fall above this point when the drug increases urine produc-
tion by 200 mL/day. Therefore, there is a 55 percent chance that we will conclude
that the drug actually increases urine production from our experiment.

(compare the discussion of Fig. 4-5), we can do the same thing when the
drug does have an effect. Figure 6-3 shows the results of 200 such experi-
ments; 111 out of the resulting values of ¢ fall at or above 2.101, the value
we used to define a “big” 7. Put another way, if we wish to keep the P value
at or below 5 percent, there is a "o = 55 percent chance of concluding
that the diuretic increases urine output when average urine output actually
increases by 200 mL/day. We say the power of the test is .55. The power
quantifies the chances of detecting a real difference of a given size.

Alternatively, we could concentrate on the 89 of the 200 experi-
ments that produced ¢ values below 2.101, in which case we would fail
to reject the hypothesis that the treatment had no effect and be wrong.
Thus, there is a *%w = 45 percent = .45 chance of continuing to accept
the hypothesis of no effect when the drug really increased urine produc-
tion by 200 mL/day on the average.

TWO TYPES OF ERRORS

Now we have isolated the two different ways the random-sampling
process can lead to erroneous conclusions. These two types of errors
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are analogous to the false-positive and false-negative results one obtains
from diagnostic tests. Before this chapter we concentrated on control-
ling the likelihood of making a false-positive error, that is, concluding
that a treatment has an effect when it really does not. In keeping with
tradition, we have generally sought to keep the chances of making such
an error below 5 percent; of course, we could arbitrarily select any cut-
off value we wanted at which to declare the test statistic “big.” Statisti-
cians denote the maximum acceptable risk of this error by «, the Greek
letter alpha. If we reject the hypothesis of no effect whenever P < .05,
a = .05, or 5 percent. If we actually obtain data that lead us to reject
the hypothesis of no effect when this hypothesis is true, statisticians say
that we have made a Type I error. They denote the chances of making
such an error with a. All this logic is relatively straightforward because
we have specified how much we believe the treatment affects the vari-
able of interest, that is, not at all.

 What about the other side of the coin, the chances of making a
false-negative conclusion and not reporting an éffect when one exists?
Statisticians denote the chance of erroneously accepting the hypothesis
of no effect by B, the Greek letter beta. The chance of detecting a true-
positive, that is, reporting a statistically significant difference when the
treatment really produces an effect, is 1 — B. The power of the test that
we discussed earlier is equal to 1 — B. For example, if a test has power
equal to .55, there is a 55 percent chance of actually reporting a statisti-
cally significant effect when one is really present. Table 6-1 summa-
rizes these definitions. '

Table 6-1 Types of Erroneous Conclusions in Statistical
Hypothesis Testing

Actual situation

Conclude from Treatment has an ' Treatment has
observations effect - - no effect
Treatment has an True positive False positive
effect Correct conclusion Type ! error
. 1-8 a
Treatment has no False negative True negative
effect " Type ll error Correct conclusion

B : 1-a
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WHAT DETERMINES A TEST'S POWER?

So far we have developed procedures for estimating and controlling the
Type I, or a, error; now we turn our attention to keeping the Type II, or
B3, error as small as possible. In'other words, we want the power to be as
high as possible. In theory, this problem is not very different from the
one we already solved with one important exception. Since the treatment
has an effect, the size of this effect influences how easy it is to detect.
Large effects are easier to detect than small ones. To estimate the power
of a'test, you need to.specify how small an effect is worth detecting.

Just as with false-positives and false-negatives in diagnostic testing,
the Type I and Type II errors are intertwined. As you require stronger ev-
idence before reporting that a treatment has an effect, ie., make o
smaller, you also increase the chance of missing a true effect, i.e., make
B bigger or power smaller. The only way to reduce both « and B simul-
taneously is to increase the sample size, because with a larger sample
you can be more confident in your decision, whatever it is.

In other words, the power of a glven statistical test depends on
three interacting factors:

*  The risk of error you will tolerate when rejecting the hypothesis
of no treatment effect.

* The size of the difference you wish to detect relative to the
amount of variability in the populations.

» The sample size. '

To keep things simple, we will examine each of these factors separately.

The Size of the Type | Error a

Figure 6-3 showed the complementary nature of the maximum size of
the Type I error o and the power of the test. The acceptable risk of erro-
neously rejecting the hypothesis of no effect, «, determines the critical
value of the test statistic above which you will report that the treatment
had an effect, P < . (We have usually taken o = .05.) This critical
value is defined from the distribution of the test statistic for all possible
experiments with a specific sample size given that the treatment had no
effect. The power is the proportion of possible values of the test statistic
that fall above this cutoff value given that the treatment had a specified
effect (here a 200 mL/day increase in urine productlon) Changing a, or
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the P value required to reject the hypothesis of no difference, moves
this cutoff point, affecting the power of the test.

Figure 6-4 illustrates this point further. Figure 6-4A essentially
reproduces Fig. 6-3 except that it depicts the distribution of ¢ values for
all 10?7 possible experiments involving two groups of 10 people as a
continuous distribution. The top part, copied from Fig. 4-5D, shows the
distribution of possible ¢ values that would occur if the drug did not
affect urine production. Suppose we require P < .05 before we are
willing to assert that the observations were unlikely to have arisen from
random sampling rather than the effect of the drug. In other words, we
make o = .05, in which case —2.101 and +2.101 delimit the most
extreme 5 percent of all possible ¢ values we would expect to observe if
the diuretic did not affect urine production.

We know, however, that the drug actually increased average urine
production by 200 mL/day. Therefore, we do not expect the distribution
of possible ¢ values associated with our experiment to be given by the
distribution at the top of the figure. It will be centered not on zero
but above zero (because we expect X, — Xpla to average around

200 mL/day). The lower distribution in Fig. 6-4A shows the actual dis-
tribution of possible ¢ values associated with our experimerit; 55 percent
of these possible values of ¢, that is, 55 percent of the area under the
curve, fall above the 2.101 cutoff, so we say the power of the test is .55.
In other words, if the drug increases average urine production by 200
ml/day in this population and we do an experiment using two samples
of 10 people each to test the drug, there is a 55 percent chance that we
will conclude that the drug is effective (P < .05). Conversely, we can
say that 3, the likelihood that we will make the false-negative, or Type
II, error and accept the hypothesis of no effect when it is not true, is
1 — .55 = .45 = 45 percent.
Now look at Fig. 6-4B. The two distributions of ¢ values are identi-
cal to those in Fig. 6-4A. (After all, the drug’s true effect is still the
" same.) This time, however, we will insist on stronger evidence before
concluding that the drug actually increased urine production. We will
require that the test statistic fall in the most extreme 1 percent of possi-
ble values before concluding that the data are inconsistent with the null
hypothesis that the drug has no effect. Thus, & = .01 and ¢ must exceed
—2.878 or +2.878 to fall in the most extreme 1 percent of values. The
top part of panel B shows this cutoff point. From the actual distribution
of ¢t values in the lower part of Fig. 6-4B, we see that only 45 percent of
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A

Distribution of t values when
diuretic has no effect

a=0.05

Biggest 5% of
t values shaded

———— S ]
=

Distribution of t values when
diuretic increases average urine
production by 200 ml/day

Power=0.55

B

No effect

a=0.01

Biggest 1% of
t values shaded

200 mL/day increase
in urine production

Power=0.45

Valueof t

Figure 6-4 (A) t = 2.101 defines the 5 percent most extreme values of the t
statistic we would expect to be associated with our experiment if the drug did not
increase urine production. Of the possible values of the t statistic that will actually
be associated with our experiment, 55 percent fall above this point because the
drug increased urine production by 200 mL/day on the average. (B) If we increase
the confidence with which we wish to reject the hypothesis that the drug had no
effect {make o smaller), the proportion of possible t values that will actually arise
from the experiment also goes down, so the power of the test to detect an effect
of a given size decreases. For example, if we change o from .05 to .01, the power
of the test-drops from 55 to 45 percent because the cutoff for a “big” tincreases
from 2.101 to 2.878.



174 ’ . CHAPTER 6

them fall above 2.878, so the power of the test has fallen to .45. In other
words, there is less than an even chance that we will report that the drug
is effective even though it actually is. '

By requiring stronger evidence that there be a treatment effect be-
fore reporting it we have decreased the chances of erroneously reporting
an effect (the Type I error), but we have increased the chances of failing
to detect a difference when one actually exists (the type II error) because
we decreased the power of the test. This trade-off always exists.

The Size of the Treatment Effect

We just demonstrated that the power of a test decreases as we reduce
the acceptable risk of making a Type I error, . The entire discussion
was based on the fact that the drug increased average urine production
by 200 mL/day, from 1200 to 1400 mL/day. Had this change been dif-
ferent, the actual distribution of ¢ values connected with the experiment
also would have been different. In other words, the power of a test
depends on the size of the difference to be detected.

Let us consider three specific examples. Figure 6-5A shows the ¢
distribution (the distribution of possible values of the ¢ statistic) for a
sample size of 10 if the diuretic had no effect and the two treatment
groups could be considered two random samples drawn from the same
population. The most extreme 5 percent of the values are shaded, just as
in Fig. 6-4. Figure 6-5B shows the distribution of .t values we would
expect if the drug increased urine production an average of 200 mL/day
over the placebo; 55 percent of the possible values are beyond —2.101 or
+2.101, so the power of the test is .55. (So far we are just recapitulating
the results in Fig. 6-4). Figure 6-5C shows the distribution of ¢ values that
would occur if the drug increased urine production only by 100 mL/day
on the average. Now only 17 percent of the possible values (correspond-
ing to 17 percent of the area under the curve) fall above 2.101, that is, the
power of the test to detect a difference of only 100 mL/day is only 0.17.
In other words, there is less than 1 chance in 5 that doing a study of two
groups of 10 people would detect a change in urine production of
100 mL/day if we required that P < .05 before reporting an effect.
Finally, Fig. 6-5D shows the distribution of ¢ values that would occur if
the drug increased urine production by an average of 400 mL/day. Now,
99 percent of all possible ¢ values fall above 2.101; the power of the test
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Figure 6-5 As the size of the treatment effect increases, the proportion of t
values that will actually arise from the experiment increases, so the power of the
test increases. )

to detect a difference this large is :99. The chances are quite good that our
experiment will produce accurate results. Figure 6-5 illustrates the gen-
eral rule: It is easier to detect big differences than small ones.

We could repeat this process for all possible sizes of the treatment
effect, from no effect at all up to very large effects, then plot the power
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of the test as it varies with the change in urine production actually pro-
duced by the drug. Figure 6-6 shows a plot of the results, called a
power function, of the test. It quantifies how much easier it is to detect a
change (when we require a value of ¢ corresponding to P < .05 and two
samples of 10 people each) in urine production as the actual drug effect

n=10 for placebo and drug samples

0.05

Power of t test to detect effect with a

0 100 200 300 400

Increase in average daily urine production, mL/day

Figure 6-6 The power of a t test to detect a change in urine production based
on experiments with two groups of people, each containing 10 individuals. The
dashed line indicates how to read the graph. A t test has a power of .55 for
detecting a 200 mL per day change in urine production.
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gets larger and larger. This plot shows that if the drug increases urine
production by 200 mL/day, there is a 55 percent chance that we will de-
tect this change with the experiment designed as we have it; if urine
production increases by 350 mL/day, the chance of our detecting this
effect improves to 95 percent. ‘

The Population Variability

The power of a test increases as the size of the treatment effect in-
creases, but the variability in the population under study also affects the
likelihood with which we can detect a treatment effect of a given size.
In particular, recall from Chapter 4 that the #-test statistic, used to com-
pare two means, is

o X, - X,
V(s®/n) + (s*/n,)

in which X, and X, are the means, s is the pooled estimate of the popu-
lation standard deviation ¢, and n, and n, are the sizes of the two sam-
ples. )_(1 and 7(2 are estimates of ., and p,, the two (different) popula-
tion means. In the interest of simplicity, let us assume that the two
samples are the same size; that is, n; = n, = n. Then ¢ computed from
our observations is an estimate of

= s S ) o S )
V(o?/n) + (6%/n)  oV2/n

Denote the change in population mean value with the treatment by 3,
Greek delta; then p; —p, = 8, and

_S/G_EE
V2/n o2

Therefore, ¢+ depends on the change in the mean response normalized
by the population standard deviation. _

For example, the standard deviation in urine production in the popu-
lation we are studying is 200 mL/day (from Fig. 6-1). In this context, an
increase in urine production of 200 or 400 mL/day can be seen to be 1 or
2 standard deviations, a fairly substantial change. These same absolute
changes in urine production would be even more striking if the popula-

tl
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tion standard deviation were only 50 mL/day, in which case a 200
ml/day absolute change would be 4 standard deviations. On the other
hand, these changes in urine production would be hard to detect—in-
deed one wonders if you would want to detect them—if the population
standard deviation were 500 mL/day. In this case, 200 mL/day would be
only 0.4 standard deviation of the normal population.

As the variability in the population o decreases, the power of the
test for detecting a fixed absolute size of treatment effects 8 increases
and vice versa. In fact, we can combine the influence of these two fac-
tors by considering the dimensionless ratio ¢ = 8/0, known as the
noncentrality parameter, rather than each one separately.

Bigger Samples Mean More Powerful Tests

So far we have seen two things: (1) The power of a test to correctly re-
ject the hypothesis that a treatment has no effect decreases as the confi-
dence with which you wish to reject that hypothesis increases; (2) the
power increases as the size of the treatment effect, measured with re-
spect to the population standard deviation, increases. In most cases, in-
vestigators cannot control either of these factors and for a given sample
size are stuck with whatever the power of the test is. However, the situ-
ation is not totally beyond their control. They can increase the power of
the test without sacrificing the confidence with which they reject the
hypothesis of no treatment effect (a) by increasing the sample size.

Increasing the sample size generally increases the power, for two
reasons. First, as the sample size grows, the number of degrees of free-
dom increases, and the value of the test statistic that defines the
“biggest” 100« percent of possible values under the assumption of no
treatment effect generally decreases. Second, as the equation for ¢’
above shows, the value of 7 (and many other test statistics) increases as
sample size n increases. As a result, the distribution of ¢ values that oc-
cur when the treatment has an effect of a given size 8/¢ is located at
higher ¢ values as sample size increases.

For example, Fig. 6-7A shows the same information as Fig. 6-44,
with the sample size equal to 10 in each of the two groups. Figure 6-7B
shows the distribution of possible ¢ values if the hypothesis of no effect
were true as well as the distribution of ¢ values that would appear if the -
drug still increased urine production by 200 mL/day ‘but now based on
an experiment with 20 people in each group. Since there are 20 people
in each group, the experiment has v = 2(20 — 1) = 38 degrees of
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Figure 6-7 As the sample size increases, the power of the test increases for
two reasons: (1) the critical value of t for a given confidence level in concluding
that the treatment had an effect decreases, and (2) the values of the t statistic
associatgd with the experiment increase. -

freedom. From Table 4-1 the critical value of ¢ defining the most
extreme 5 percent of possible values is 2.025 (compared with 2.101
when there were 10 people in each group). The larger sample size also
produces’ larger values of ¢, on the average, when the treatment in-
creases urine production by 200 mL/day (with a population standard
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deviation of 200 mL/day, as before) than it did with the smaller sample
size. These two factors combine to make 87 percent of the possible
values of ¢ fall above 2.025. Therefore, there is an 87 percent chance of
concluding that the drug has an effect; the power of the test under these
circumstances is .87, up substantially from the value of .55 associated
with the smaller sample size.

We could repeat this analysis over and over again to compute the
power of this test to detect a 200 mL/day increase in urine production
for a variety of sample sizes. Figure 6-8 shows the results of such com-
putations. As the sample size increases, so does the test’s power. In fact,
estimating the sample size required to detect an effect large enough to
be clinically significant is probably the major practical use to which
power computations are put. Such computations are especially impor-
tant in planning randomized clinical trials to estimate how many pa-
tients will have to be recruited and how many centers will have to be in-
volved to accumulate enough patients to obtain a large enough sample
to complete a meaningful analysis.

What Determines Power? A Summary

Figure 6-9 shows a general power curve for the ¢ test, allowing for a va-
riety of sample sizes and differences of interest. All these curves as-
sume that we will reject the hypothesis of no treatment effect whenever
we compute a value of ¢ from the data that corresponds to. P < 0.5 (so
o = .05). If we were more or less stringent in our requirement concern-
ing the size of ¢ necessary to report a difference; we would obtain a
family of curves different from those in Fig. 6-9.

There is one curve for each value of the sample size n in Fig. 6-9.
This value of n represents the size of each of the two sample groups be- |
ing compared with the ¢ test. Most power charts (and tables) present the
results assuming that each of the experimental groups is of the same
size, because, for a given total sample size, power is greatest when
there are equal numbers of subjects in each treatment group. Thus,
when using power analysis to estimate the sample size for an experi-
ment, the result actually yields the size of each of the sample groups.
Power analysis also can be used to estimate the power of a test that
yielded a negative finding; in the case of unequal sample sizes, use the
size of the smaller sample in the power analysis. This procedure will
give you a conservative (low) estimate for the power of the test.
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Drug increases average
urine production by 200 mL/day
1.0 »

0.8

0.05

0.4

Power of t test to detect effect with a

0.2

0 R [ I 20 30 40

Sample size (each test group)

Figure 6-8 The effect of sample size on the power of a t test to detect a
200 mL per day increase in urine production with o = .05 and a population stan-
dard deviation in urine production of 200 mL per day. The dashed line iflustrates
how to read the graph. A sample size of 10 yields a power of .55 for a t test to
detect a 200 ml/day change in urine production. '
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th a=0.05

wi

Power of t test to detect difference

¢ = dlo

Figure 6-9 The power function for a test for comparing two experimental
groups, each of size n, with a = .05. 8 is the size of the change we wish to de-
tect, o is the population standard deviation. If we had taken « = .01 or any other
value, we would have obtained a different set of curves. The dashed line indi-
cates how to read the power of a test to detect a & = 200 mL/day change in
urine production with a ¢ = 200 mb/day standard deviation in the underlying
population with a sample size of n= 10 in each test group; the power of this
test is .55. The dotted line indicates how to find the power of an experiment de-
signed to study the effects of anesthesia on the cardiovascular system in which
¢ = 8/o = .55 with a sample size of 9; the power of this test is only .16.




WHAT DOES “NOT SIGNIFICANT” REALLY MEAN? 183

To illustrate the use of Fig. 6-9, again consider the effects of
diuretic presented in Fig. 6-1. We wish to compute the power of a ¢ test
(with a 5 percent risk of a Type I error, « = .05) to detect a mean
change in urine production of 200 mL/day when the populatlon has a
standard deviation of 200 mL/day. Hence

_ ) _ 200 mL/day _
200 mL/day

Since the sample size is # = 10 (in both the placebo and drug groups),
we use the “n = 10” line in Fig. 6-9 to find that this test will have a
power of .55.

All the examples in this chapter so far deal with estimating the power
of an experiment that is analyzed with a ¢ test. It is also possible to com-
pute the power for all the other statistical procedures described in this
book. Although the details of the computations are different, the same vari-
ables are important and play the same general roles in the computation.

Another Look at Halothane versustrphine
for Open-Heart Surgery

Table 4-2 presented data on the effects of anesthesia on the cardiovas-
cular system. When we analyzed these data with a ¢ test, we did not
conclude that halothane and morphine anesthesia produced significantly
different values of cardiac index, which is defined as the rate at which
the heart pumps blood (the cardiac output) divided by body surface
area. This conclusion, however, was based on relatively small samples
(n = 9 for the halothane group and n = 16 for the morphine group),
and there was a 15 percent change in mean cardiac index (from 2.08
L/m? for halothane to 1.75 L/m? for morphine) between these two anes-
thetic regimes. While a 15 percent change in cardiac index may not be
clinically important, a 25 percent change could be. The question then
becomes: What is the power of this experiment to detect a 25 percent
change in cardiac index?

We have already decided that a 25 percent change in cardiac mdex
0.52 L/m? (25 percent of 2.08 L/m?), is the size of the treatment effect
worth detecting. From the data in Table 4-2, the pooled estimate of the
variance in the underlying population is s2. = 0.88 (L/m?)?%; take

wit
the square root of this number to obtain the estimate of the population
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standard deviation of 0.94 L/m2. Hence

Since the two sample groups have different sizes, we estimate the
power of the test based on the size of the smaller group, 9. From Fig.
6-9, the power is only .16! Thus it is very unlikely that this experiment
would be able to detect a 25 percent change in cardiac index.

We summarize our discussion of the power of hypothesis-testing
procedures with these five statements.

* The power of a test tells the likelihood that the hypothesis of no

treatment effect will be rejected when the treatment has an
- effect.

» The more stringent our requirement for reportzng that the treat-
ment produced an effect (i.e., the smaller the chances of erro-
neously reporting that the treatment was eﬁ"ectzve) the lower the
power of the test.

* The smaller the size of the treatment effect (with respect to the
population standard deviation), the harder it is to detect.

» The larger the sample size, the greater the power of the test.

* The exact procedure to compute the power of a test depends on
the test itself.

POWER AND SAMPLE SIZE
FOR ANALYSIS OF VARIANCE*

The issues underlying power and sample size calculations in analysis of
variance are no different than for the ¢ test. The only difference is the
way in which the size of the minimum detectable treatment effect is
quantified and the mathematical relationship relating this magnitude
and the risk of erroneously concluding a treatment effect. The measure
of the treatment effect to be detected is more complicated than in a ¢
test because it must be expressed as more than a simple difference of
two groups (because there are generally more than two groups in an
analysis of variance). The size of the treatment effect is again quantified

*In an introductory course, this section can be skipped without interfering with the
remaining material in the book.
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by the noncentrality parameter, ¢, although it is defined differently
than for a ¢ test. To estimate the power of an analysis of variance, you
specify the number of treatment groups, sample size, risk of a false-
positive (o) you are willing to accept, and size of the treatment effect
you wish to detect (¢), then look the power up in charts for analysis of
variance, just as we used Figure 6-9 for ¢ tests.

The first step is to define the size of the treatment effect with the
noncentrality parameter. We specify the minimum difference between
any two treatment groups we wish to detect, 8, just as when computing
the power of the ¢ test. In this case, we define

b=2 |1

o\ 2k
where o is the standard deviation within the underlying population, kis
the number of treatment groups, and r is the sample size of each treat-
ment group.* (Note the similarity with the definition of ¢ = /o for the
t test.) Once ¢ is determined, obtain the power by looking in a power
chart such as Figure 6-10 with the appropriate number of numerator de-
grees of freedom, v, = k—1 and denominator degrees of freedom
vy=k(n —1). (A more complete set of power charts for analysis of
variance appears in Appendix B.)

These same charts can be used to estimate the sample size neces-
sary to detect a given effect with a specified power. The situation is a
little more complicated than it was in the 7 test because the sample size,

*We present the analysis for equal sample sizes in all treatment groups and the case
where all the means but one are equal and the other differs by 8. This arrangement pro-
duces the maximum power for a given total sample size. An alternative definition of ¢ in-
volves specifying the means for the different treatment groups that you expect to detect,
1; for each of the k groups. In this case ’

_ nz(“‘i - lL)Z
¢ = ko?
where ;
py T
BT

is the grand population mean. The definition of ¢ in terms of the minimum detectable dif-
ference is generally easier to use because it requires fewer assumptions.
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Figure 6-10. The power function for analysis of variance for v, = 2 and o = .05.
Appendix B contains a complete set of power charts for a variety of values of v,
and a = .05 and .01. {Adapted from E. S. Pearson and H. O. Hartley, “Charts for
the Power Function for Analysis of Variance Tests, Derived from the Non-Central
F Distribution, ” Biometrika, 38:112—-130, 1951.)

n, appears in the noﬁ&:ntrality parameter, ¢, and the denominator
degrees of freedom, v, As a result, you must apply successive guesses
to find n. You first guess n, compute the power, thén adjust the guess
until the computer power is close to the desired value. The example be-
low illustrates this process.
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Power, Menstruation, and Running

To illustrate power and sample size computations for analysis of vari-
ance, let us return to the study of the effect of running on menstruation
we discussed in conjunction with Figure 3-9. The essential question is
whether women who jog or are serious runners have menstrual patterns
different from sedentary women. Suppose we wish to detect a change
of 8 =1 menses per year when there is an underlying variation of
o = 2 menses per year among k = 3 groups of women (controls, jog-
gers, and long-distance runners), and #» = 26 women in each group
with 95 percent confidence (o = .05). (This is about the magnitude of
the effect observed in the example in Chapter 3.) To find the power of
this test, we first compute the noncentrality parameter

1 [26
o= |55 =104

There are v,=k—1=3—1=2 numerator and v, =k(n—1)
= 3(26 — 1) = 75 denominator degrees of freedom. From Fig. 6-10,
the power is only about .32!

As with most power computations, this result is sobering. Suppose
that we wanted to increase the power of the test to .80; how big will the
samples have to be? We already know that 26 women per group is too
small. Examining Fig. 6-10 suggests that we need to get ¢ up
to about 2. Since the sample size, n, appears under a square root in the
definition of &, let us increase n by about a factor of 4 to 100 women
per group. Now,

1 -[100
=- [—— =204
¢ 2y2-3 - >0

and v = k(n — 1) = 3(100 — 1) = 297. From Fig. 6-10, the power is
.90. Given the uncertainties in the estimates of o before actually
conducting the experiment, this is probably close enough to stop work-
ing. The problem is that getting large samnples is often difficult (and
expensive). To get closer to the desired power of .80, let us try a smaller
sample size, say 75. Now, '

1 [75
¢=5 |55=17
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and v; = 3(75 — 1) = 222. From Fig. 6-10, the power is .80. There-
fore, to have an 80 percent chance of detecting a change of 1 menses
per year among three groups of women when the standard deviation of
the underlying population is 2 menses per year with 95 percent confi-
dence, we need 75 women in each group.

POWER AND SAMPLE SIZE FOR COMPARING
TWO PROPORTIONS*

The development of formulas for power and sample size when comparing
two proportions is similar to the procedure that we used for the ¢ test, ex-
cept that we will be basing the computations on the normal distribution.
We wish to find the power of a z test to detect a difference between two
proportions, p, and p, with sample sizes n, and n,. Recall, from Chapter 5,
that the z test statistic used to compare two observed proportions, is

ﬁl_ﬁ2

sPl P2

zZ=

This test statistic is distributed according to a normal distribution with
mean (p; — p,) and standard deviation :

s - \/pl(l — Py +P2(1 —P)

PP n n,

(Note that we do not base our estimate of the standard deviation on
sample estimates, since p; and p, are specified as part of the problem.)
Figure 6-11 A shows this expected distribution of observed differences,
D, — P,. To achieve a power of 100(1 — ) percent, 100(1 — B) per-
cent of this distribution must be above (p; — p,) + zgq) s, —p,, Where
Zp() is the lower-tail (one tail) value on the standard normal dlstrlbutlon
that defines the lowest 1003 percent of the distribution (Table 6-2). For
example, to obtain 80 percent power, zg = 7,9 = —.842.

Under the null hypothesis p; = p,, they would be simply two dif-
ferent estimates of the proportion of the underlying population that has
the characteristic of interest, p. We can estimate p with

" *In introductory courses, this material can be skipped without loss of continuity.
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Figure 6-11 (A) The distribution of all possible values of the observed differ-
ences between the two proportions, p, — p, follows a normal distribution
centered on the true mean difference of the two populations, p, — p,, and with
standard deviation s, _, . (B) If the null hypothesis of no difference between
the two populations is true, then the distribution of all observed differences of the
two proportions will be centered on 0 (because p, — p, = 0) with standard devia-
tion s;. If you are willing to accept a false positive (Type I) risk of &, then a percent
of the possible observed values of g, — B, will be at or above z,s,. At the same
time, 100(1--B) percent of the possible observed values of p, — p, will be above
this value when the actual difference between the two population proportions is
P — p, # 0, which is the power of the test to detect this difference.

mp,+np,

pP= n; +n,

so the resulting sampling distribution of the z test statistic will be dis-
tributed normally with mean p, — p, = 0 and standard deviation

s0=\/13(1—13)+13(1—ﬁ)

n n,

Figure 6-11B shows this distribution. We reject the null hypothesis of
no difference at the 100a percent level of confidence when the ob-
served value of p;, — p, is large enough to be above z, s,.

‘We will achieve 100(1 — B) percent power for hypotheses rejected
with 100a percent level of confidence when the two points in panels A
and B of Fig. 6-11 line up. (Compare with Fig. 6-4.) In mathematical
terms, this occurs when



190 CHAPTER 6

Table 6-2 Percentile Points of the Standard Normal
Distribution (One Tail)

Fraction of distribution Fraction of distribution
below z above z ‘
(B) (1-B) Rowse z
.001 - .999 —-3.0902
.005 .995 —2.5758
.010 : 1990 —-2.3264
.020 .980 —2.0538
.050 .950 . —1.6449
.100 .900 —1.2816
.200 800 -0.8416
.300 ) 700 —0.5244
400 .600 —-0.2534
- 500 ’ .500 0.0000
' 600 ' 400 : 0.2534
.700 - .300 0.5244
.800 .200 0.8416
900 100 © 1.2816
950 .050 1.6449
.980 ) .020 . 2.0538
.990 .010 2.3264
.995 .005 2.5758
.999 ) .001 3.0902

(Pr = P2 + 251y Sp —p, = Za0

Finally, the power of the test is the probability (from the ’standard nor-
mal distribution) that z exceeds™ :

_ 248 —(py —Py)
Lo~ T
I 20 )

*Technically, we should also include the part of the distribution in Fig. 6-11A that
falls below the lower z, tail of the distribution in Fig. 6-11B, but this tail of the distribu-
tion rarely contributes anything of consequence. Note that these calculations do not in-
clude the Yates correction. It is possible to include the Yates correction by replacing
(py — pp) with [p; — pyl — (1/n; + 1/ny). Doing so makes the arithmetic more difficult,
but does not represent a-theoretical change. Including the Yates correction lowers the
power or increases the sample size.
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Mortality Associated with Anesthesia for
Open-Heart Surgery

When we studied the mortality assobiated with halothane (13.1 per-
cent of 61, patients) and morphine (14.9 percent of 67 patients) anes-
thesia in open heart surgery in Chapter 5, we did not find a significant
difference. What is the power of this study to detect a 30 percent
difference in mortality, from 14 to 10 percent with 95 percent confi-
dence?

In this case, p; = .14 and p, = .10; n; = 61 and n, = 67, so

~ \/.14(1 .14 .10(1 - .10) _

Spi—p, = ol &7 = 0576
To cdmpute s we first compute
3
14-61 + .10-67 ° ‘
5 = =11
p 61 + 67 ?
in which case
1191 = .119)  .119(Q1 — .119)
= + =0
g \/ 3 , &7 573

The two-tail 95 percent critical value of the normal distribution, zs is
1.96, so the power of the test is the fraction of the normal distribution
above

_1.96-.0573 — (.14 — .10)
O 0576

= 1.255

From Table 6-2, the power of the test is only 11 perceht, so you should
be careful about negative conclusions in such a study!

Sample Size fbr Comparing Two Proportions

To obtain the sample size to compare two proportions, simply take zp, as -
given and solve the resulting equations for n, the size of each group.
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Assuming that the two groups are the same size, this process yields

2
4%
+ [1+2
A[l 1 A]
n=

452
where
A=,lz,V2p (1 — p)+ Ly \/Pl t=p)+pa- Pz)]2
w_ P11t D
P 2
8= |p, — p,

POWER AND SAMPLE SIZE FOR RELATIVE
RISK AND ODDS RATIO

The formulas developed above can be used to estimate power and
sample sizes for relative risks and odds ratios. Instead of specifying
both proportions, you simply specify one proportion, the desired rela-
tive risk or odds ratio, and compute the other proportion. Let p, be the
probability of disease in the unexposed members of the population
and p, be the probability of disease in the exposed members of the
population.

The relative risk is the ratio of the probability of disease in those
exposed to the toxin of interest over those not exposed,

RR = pexposed =P2

P unexposed P

so use the formulas above with
p,=RR-p,
Likewise, the odds ratio is

Pexposed /1 - pexposed) — P2/(1 - Pz)r‘ '
: punexposed /(1 - punexposed) pl/(l - Pl)

OR =
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SO

OR - p,
=TT, (OR=-D
p (OR— 1)

POWER AND SAMPLE SIZE
FOR CONTINGENCY TABLES*

Figure 6-10 (and the corresponding charts in Appendix B) can also be
used to compute the power and sample size for contingency tables. As
with other power computations, the first step is to define the pattern you
wish to be able to detect. This effect is specified by selecting the
proportions of row and column observations that appear in each cell of
the contingency table. Table 6-3 shows the notation for the computation
for a 3 X 2 contingency table, p,, is the proportion of all observations
expected in the upper left cell of the table, p;, the proportion in the up-
per right corner, and so on. All the proportions must add up to 1. The r
row and ¢ column sums are denoted with R’s and C’s with subscripts
corresponding to the rows and columns. The noncentrality parameter
for such a contingency table is defined as

_ N (py — RiC')2
*= \/(r— De-D+1° jR,.c,. j

where r is the number of rows, ¢ is the number of columns, and N is the
total number of observations. This value of ¢ is used with Fig. 6-10
with v, = (r — 1)(c — 1) and v, = o« degrees of freedom.

To compute the sample size necessary to achieve a given power,
simply reverse this process. Determine the necessary value of ¢ to

Table 6-3 Notation for Computing
Power for Contingency Tables

P Pz Ry
P21 : P2z R,
Par’ ) - A
[ [0} 1.00

*In introductory courses, this section can be skipped without loss of continuity.
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achieve the desired power with v, = (r — 1)}(c — 1) and v; = « from
Fig. 6-10 (or the power charts in Appendix B). We obtain the sample
size by solving the equation above for N, to obtain

_PUr—=De -1+ 1]
- (p; — RiC')2
S 20y Ricj fi

N

Physicians, Perspiration, and Power

In addition to studying the effect of running on menstruation, Dale
and colleagues also studied how likely women were to consult a
physician depending on their running status. (This example was
discussed in conjunction with Table 5-5.) Let us examine the power of
a contingency table to detect the pattern of proportions shown in
Table 6-4 with 95 percent confidence () from a sample of N = 165
women. Substituting into the equation above

o= 165 . (025 — 250 - 350)2 °
G-D2-1D+1 250 - .350 ’
(225 — 250 - .650)>  (.100 — .300 - .350)2
250 -.650 .300 - .350
(.200 — .300 - .650)* = (225 — .450 - .350)?
300 - .650 450 - 350
(225 — 450 - .650)%_ |
450 - .650
¢ = 2.50

Table 6-4 Pattern of Physician Consultation
_ for Menstrual Problems to be Detected '

Group Yes' - No " Total
Controls .025 225 .250
Joggers ..100 200 .300
Runners 225 - 225 .450

Total 350 - .650 1.00
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Consult Fig. 6-10 with ¢ =250, v,=@F¢ - IDc—1D=G -1
(2 — 1) = 2 and v, = o degrees of freedom to obtain a power of .98 to
detect this pattern with 95 percent confidence.

s

PRACTICAL PROBLEMS IN USING POWER

If you know the size of the treatment effect, population standard devia-
tion, o, and sample size, you can use graphs like Fig. 6-9 to estimate the
power of a ¢ test after the fact. Unfortunately, in practice, one does not
know how large an effect a given treatment will have (finding that out is
usually the reason for the study in the first place); so you must specify
how large a change is worth detecting to compute the power of the test.

This requirement to go on record about how small a change is worth
detecting may be one reason that very few people report the power of the
tests they use. While such information is not especially important when in-
vestigators report that they detected a difference, it can'be quite important
when they report that they failed to detect one. If the power of the test to
detect a clinically significant effect is small, say 25 percent, this report will
mean something quite different than if the test was powerful enough to de-
tect a clinically significant difference 85 percent of the time.

These difficulties are even more acute when using power computa-
tions to decide on the sample size for a study in advance. Completing
this computation requires that investigators estimate not only the size
of the effect they think is worth detecting and the confidence with
which they hope to accept () or reject (o) the hypothesis that the treat-
ment is effective but also the standard deviation of the population being
studied. Sometimes existing information can be used to estimate these
numbers; sometimes. investigators do a pilot study to estimate them;
sometimes they simply guess.

WHAT DIFFERENCE DOES IT MAKE?

In Chapter 4 we discussed the most common error in the use of statisti-
cal methods in the medical literature, inappropriate use of the ¢ test.
Repeated use of ¢ tests increases the chances of reporting a “statistically
significant” difference above the nominal levels one obtains from the ¢ .
distribution. In the language of this chapter, it increases the Type I
. error. In practical terms, this increases the chances that an investigator
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will report some procedure or therapy capable of producing an effect
beyond what one would expect from chance variation when the evi-
dence does not actually support this conclusion.

This chapter examined the other side of the coin, the fact that per-
fectly correctly designed studies employing statistical methods correctly
‘may fail to detect real, perhaps clinically important, differences simply be-
cause the sample sizes are too small to give the procedure enough power
to detect the effect. This chapter shows how you can estimate the power of
a given test after the results are reported in the literature and also how in-
vestigators can estimate the number of subjects they need to study to de-
tect a specified difference with a given level of confidence (say, 95 per-
cent; that is, o = .05). Such computations are often quite distressing
because they often reveal the need for a large number of experimental sub-
jects, especially compared with the relatively few patients who typically
form the basis for clinical studies.* Sometimes the investigators increase
the size of the difference they say they wish to detect, decrease the power
they find acceptable, or ignore the whole problem in an effort to reduce
the necessary sample size. Most medical investigators never confront these
problems because they have never heard of power. -

In 1979, Jennie Freiman and colleagues’ examined 71 randomized
clinical trials published between 1960 and 1977 in journals, such as The
Lancet, the New England Journal of Medicine, and the Journal of the
American Medical Association, reporting that the treatment studied did
not produce a “statistically significant” (P < .05) improvement in clinical
outcome. Only 20 percent of these studies included enough subjects to de-
tect a 25 percent improvement in clinical outcome with a power of .50 or
better. In other words, if the treatment produced a 25 percent reduction in
mortality rate or other clinically important endpoint, there was less than a
50:50 chance that the clinical trial would be able to detect it with P <
.05. Moreover, Freiman and colleagues found that only one of the 71
papers stated that o and 3 were considered at the start of the study; 18

*R. A. Fletcher and S. W. Fletcher (“Clinical Research in General Medical Journals:
A 30-Year Perspective,” N. Engl. J. Med., 301:180-183, 1979) report the median number
of subjects included in clinical studies published in the Journal of the American Medical
Association, The Lancet, and the New England Journal of Medicine in 1946 to 1976
ranged from 16 to 36 people. : X

1J. A. Freiman, T. C. Chalmers, H. Smith, Jr., and R. R. Kuebler, “The Importance
of Beta, the Type II Error and Sample Size in the Design and Interpretation of the Ran-
domized Controlled Trial,” N. Engl. J. Med., 299:690-694, 1978.
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recognized a trend in the results, whereas 14 commented on the need for a
larger sample size.

Fifteen years later, in 1994, Mohler and colleagues™ revisited this
question by examining randomized controlled trials in these same jour-
nals published in 1975, 1980, 1985, and 1990. While the number of
randomized controlled trials published in 1990 was more than twice the
number published in 1975, the proportion reporting negative results re-
mained reasonably constant, at about 27 percent of all the trials. Only
16 percent and 36 percent of the negative studies had an adequate
power (.80) to detect a 25 percent or 50 percent change in outcome, re-
spectively. Only one third of the studies with negative results reported
information regarding how the sample sizes were computed. While dis-
appointing, this result is better than Freiman and colleagues observed in
1979, when no one reported on sample size computations.

The fact remains, however, that publication of “negative” studies
without adequate attention to.having a large enough sample size to
draw definitive conclusions remains a problem. Thus, in this area, like
the rest of statistical applications in the medical literature, it is up to
responsible readers to interpret what they read rather than take it at
face value. ,

Other than throwing your hands up when a study. with low power fails
to detect a statistically significant effect, is there anything an investigator or
clinician reading the literature can learn from the results? Yes. Instead of fo-
cusing on the accept—reject logic of statistical hypothesis testing,’ one can

_try to estimate how strongly the observations suggest an effect by estimat-
ing the size of the hypothesized effect together with the uncertainty of this

*D. Mohler, C. S. Dulberg, G. A. Wells, “Statistical Power, Sample Size, and Their
Reporting in Randomized Clinical Trials,” JAMA 272:122-124, 1994,

tThere is another approach that can be used in some clinical trials to avoid this
accept—reject problem. In a sequential trial the data are analyzed after each new individual
is added to the study and the decision made to (1) accept the hypothesis of no treatment ef-
* fect, (2) reject the hypothesis, or (3) study another individual. Sequential tests generally al-
low one to achieve the same levels of o and B for a given size treatment effect with a
smaller sample size than the methods discussed in this book. This smaller sample size is
purchased at the cost of increased complexity of ‘the statistical procedures. Sequential
analyses are often performed by repeated use of the statistical procedures presented in this
book; such as the ¢ test. This procedure is incorrect because it produces overoptimistic P
values, just as the repeated use of ¢ tests (without the Bonferroni correction) produces
erroneous results when one should do an analysis of variance. See W.J. Dixon and FJ.
Massey, Introduction to Statistical Analysis (4 ed.), McGraw-Hill, New York, 1983,
chapter 18, “Sequential Analysis,” for an introduction to sequential analysis.
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estimate.”* We laid the groundwork for this procedure in Chapters 2, 4, and
5 when we discussed the standard error and the ¢ distribution. The next
chapter builds on this base to develop the idea of confidence limits.

PROBLEMS

6-1 Use the data in Table 4-2 to find the power of a 7 test to detect a 50 percent
difference in cardiac index between halothane and morphine anesthesia.

6-2 How large a sample size would be necessary to have an 80 percent
chance of detecting a 25 percent difference in cardiac index between
halothane and morphine anesthesia?

6-3 Use the data in Table 4-2 to find the power of the experiments reported
there to detect a 25 percent change in mean arterial blood pressure and
total peripheral resistance. ' '

6-4 In Prob. 3-5 (and again in Prob. 4-4), we decided that there was insuffi-
cient evidence to conclude that men and women who have had at least
one vertebral fracture differ in vertebral bone density. What is the power
of this test to detect average (with & = .05) bone density in men 20 per-
cent lower than the average bone density for women?

6-5 How large a sample would be necessary to be 90 percent confident that
men have vertebral bone densities of at least 30 percent of the values for
women when you wish to be 95 percent confident in any conclusion that
vertebral bone densities differ between men and women? '

6-6 Use the data in Prob. 3-2 to find the power of detecting a change in mean
forced midexpiratory flow of 0.25 L/s with 95 percent confidence.

6-7 Use the data in Prob. 3-3 to find the power of detecting an increase in
HDL of 5 mg/dL and 10 mg/dL with 95 percent confidence.

6-8 How large must each sample group be to have an 80 percent power to
detect a change of 5 mg/dL with 95 percent confidence?

6-9 What is the power of the experiment in Prob. 5-4 to detect a situation in
which ampicillin and trimethoprim-sulfamethoxazole both prevent re-

'CiAERE of urinary tract infections one-third of the time and cephalexin

Ses i . .
M&éﬂ%@two-thlrds of the time. Assume that the same num-

ber of people take each drug as in Prob. 5-4. Use o = .05. ;
6-10 How large would the sample size need to be in Prob. 6-9 to reach
80 percent power? -

*One quick way to use a computerized statistical package to estimate if getting more
cases would resolve a power problem is to simply copy the data twice and rerun the analy-
sis on the doubled data set. If the results become less ambiguous, it suggests that obtaining
more cases (on the assumption that the data will be similar to that which you have already
obtained) will yield less ambiguous results. This procedure is, of course, not a substitute
for a formal power analysis and would certainly not be reportable in a scientific paper, but
it is an easy way to get an idea of whether gathering more data would be worthwhile.
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Confidence Intervals

All the statistical procedures developed so.far were designed to help
decide whether or not a set of observations is compatible with some
hypothesis. These procedures yielded P values to estimate the chance
of reporting that a treatment has an effect when it really does not and
the power to estimate the chance that the test would detect a treatment
effect of some specified size. This decision-making paradigm does
. not characterize the size of the difference or illuminate results that
* may not be statistically significant (i.e., not associated with a value of
P below .05) but does nevertheless suggest an effect. In addition,
- since P depends not only on the magnitude of the treatment effect but
also the sample size, it is common for experiments to yield very small
‘values of P (what investigators often call “highly significant” results)
- when the magnitude of the treatment effect is so small that it is clini-
cally or scientifically unimportant. As Chapter 6 noted, it can be more
informative to think not only in terms of the accept—reject approach
of statistical hypothesis testing but also to estimate the size of the

199



200 CHAPTER 7

treatment effect together with some measure of the uncertainty in that
estimate.

This approach is not new; we used it in Chapter 2 when we de-
fined the standard error of the mean to quantify the certainty with
which we could estimate the population mean from a sample. We ob-
served that since the population of all sample means at least approxi-
mately follows a normal distribution, the true (and unobserved) popu-
lation mean will lie within about 2 standard errors of the mean of the
sample mean 95 percent of the time. We now develop the tools to
make this statement more precise and generalize it to apply to other
estimation problems, such as the size of the effect a treatment pro-
duces. The resulting estimates, called confidence intervals, can also
be used to test hypotheses.” This approach yields exactly the same
conclusions as the procedures we discussed earlier because it simply
represents a different perspective on how to.use concepts like the
standard error, ¢, and normal distributions. Confidence intervals are
also used to estimate the range of values that include a-specified pro-
portion of all members of a population, such as the “normal range” of
values for a laboratory test. : .

THE SIZE OF THE TREATMENT EFFECT
MEASURED AS THE DIFFERENCE
OF TWO MEANS

In Chapter 4, we defined the ¢ statistic to be

‘= difference of sample means '
standard error of difference of sample means

then computed its value for the data observed in an experiment. Next,
we compared the result with the value ¢, that defined the most extreme
100a percent of the possible values to 7 that would occur (in both tails)
if the two samples were drawn from a single population. If the observed
value of ¢ exceeded #,, we reported a “statistically significant” differ-
ence, with P <a. As Fig. 4-5 showed, the distribution of possible

*Some statisticians believe that confidence intervals provide a better way to think
about the results of experiments than traditional hypothesis testing. For a brief exposition
from this perspective, see K. J. Rothman, “A Show of Confidence,” N. Engl. J. Med.,
299:1362—-1363, 1978. ‘
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values of ¢ has a mean of zero and is symmetric about zero when the
two samples are drawn from the same population.

On the other hand, if the two samples are drawn from popula-
tions with different means, the distribution of values of ¢ associated
with all possible experiments involving two samples of a given size
is not centered on zero; it does not follow the ¢ distribution. As
Figs. 6-3 and 6-5 showed, the actual distribution of possible values
of ¢ has a nonzero mean that depends on the size of the treatment ef-
fect. It is possible to review the definition of ¢ so that it will be dis-
tributed according to the ¢ distribution in Fig. 4-5 regardless of
whether or not the treatment actually has an effect. This modified
definition of ¢ is

difference of sample means —
true difference in population means

t= T
standard error of difference of sample means

Notice that if the hypothesis of no treatment effect is correct, the differ-
ence in population means is zero and this definition of # reduces to the
one we used before. , '

The equivalent mathematical statement is

- (Z - )_(2) = (py — Hz)

s)?l - }2

In Chapter 4 we computed ¢ from the observations, then compared it
with the critical value for a “big” value of ¢ with v=1n,+ n,— 2
degrees of freedom to obtain a P value. Now, however, we cannot fol-
low this approach since we do not know all the terms of the right side
of the equation. Specifically, we do not know the true difference in
mean values of the two populations from which the samples were
drawn, ; — p,. We can, however, use this equation to estimate the size
of the treatment effect, p, — ..

Instead of using the equation to determine ¢, we will select an ap-
propriate value of ¢ and use the equation to estimate w, — p,. The only
problem is that of selecting an appropriate value for ¢. -

By definition, 100a percent of all possible values of ¢ are more
negative than —¢, or more positive than +t,. For example, only 5 per-
cent of all possible ¢ values will fall outside the interval between —¢ s
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and 145, where fgs is the critical value of ¢ that defines the most ex-
treme 5 percent of the ¢ distribution (tabulated in Table 4-1). Therefore,
100(1 — «) percent of all possible values of ¢ fall between —¢, and -+z,.
For example, 95 percent of all possible values of z will fall between
—tgs and +1s.

Every different pair of random samples we draw in our experiment
will be associated with different values of X, X,, and s%,-x,5 and
100(1 — o) percent of all possible experiments involving samples of a
given size will yield values of ¢ that fall between —¢, and +7¢,. Therefore,
for 100(1 — o) percent of all possible experiments

()_(1 - )_(2) — (B — )

“\Y)_(l _Xz

< +r

o

_ta <

Solve this equation for the true difference in sample means
Xy — Xp) — to5%,-%, < My M < X, —X,) + [aS%,-X,

In other words, the actual difference of the means of the two popu-
lations from which the samples were drawn will fall within ¢, standard
errors of the difference of the sample means of the observed difference
in the sample means (t, has v = n; + n — 2 degrees of freedom, just as
when we used the ¢ distribution in hypothesis testing.) This range is
called the 100(1 — o) percent confidence interval for the difference of
the means. For example, the 95 percent confidence interval for the true
difference of the sample means is '

X — X)) — tossz,-x, <~ < (X — X,) + 1055%,-%,

This equation defines the range that will include the true difference in
the means for 95 percent of all possible experiments that involve
drawing samples from the two populations under study.

Since this procedure to compute the confidence interval for the
difference of two means uses the ¢ distribution, it is subject to the same
limitations as the ¢ test. In particular, the samples must be drawn from
populations that follow a normal distribution at least approximately.*

*It is also possible to define confidence intervals for differences in means when
there are multiple comparisons, using ¢ and g’ in place of . For a detailed discussion
of these computations, see J. H. Zar, Biostatistical Analysis, 2d ed., Prentice-Hall,
Englewood Cliffs, N.J., 1984, p. 191-192, 195.
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THE EFFECTIVE DIURETIC

Figure 6-1 showed the distributions of daily urine production for a popu-
lation of 200 individuals when they are taking a placebo or a drug that is
an effective diuretic. The mean urine production of the entire population
when all members are taking the placebo is ., = 1200 mL/day. The
mean urine production for the population when all members are taking
the drug is pg = 1400 mL/day. Therefore, the drug increases urine pro-
duction by an average of w4 — py, = 1400 — 1200 = 200 mL/day. An
investigator, however, cannot observe every member of the population
and must estimate the size of this effect from samples of people ob-
served when they are taking the placebo or the drug. Figure 6-1 shows
one pair of such samples, each of 10 individuals. The people who re-
ceived the placebo had a mean urine output of 1150 mL/day, and the
people receiving the drug had a mean urine output of 1400 mL/day.
Thus, these two samples suggest that the drug increased urine produc-
tion by X, — Xy, = 1400 — 1150 = 250 mL/day. The random varia-
tion associated with the sampling procedure led to a different estimate of
the size of the treatment effect from that really present. Simply present-
ing this single estimate of 250 mL/day increase in urine output ignores
the fact that there is some uncertainty in the estimates of the true mean
urine output in the two populations, so there will be some uncertainty in
the estimate of the true difference in urine output. We now use the confi-
dence interval to present an alternative description of how large a change
in urine output accompanies the drug. This interval describes the aver-
age change seen in the people included in the experiment and also re-
flects the uncertainty introduced by the random sampling process.

To estimate the standard error of the difference of the means
5%, —%,, We first compute a pooled estimate of the population variance.
The standard deviations of observed urine production were 245 and 144
mL/day for people taking the drug and the placebo, respectively. Both
samples included 10 people; therefore, -

= o], + s3) = 2(245% + 144%) = 201°

and -

S2 S2 2012 2012
-X,. \/ 0 0 = 89.9 mL/day
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To compute the 95 percent confidence interval, we need the
value of #,s from Table 4-1. Since each sample contains n = 10
individuals, we use the value of t 5 corresponding tov = 2(n — 1) =
2(10 — 1) = 18 degrees of freedom. From Table 4-1, ¢ s = 2.101.

Now we are ready to compute the 95 percent confidence interval for
the mean change in urine production that accompanies use of the drug

Kar = Xpw) — 1055%,-%,, < Par ~ Popta < Kar = Xpra) + 2055%, -,

250 — 2.101(89.9) < g — P, < 250 + 2.101(89.9)
61 mL/day < g ~ iy, < 439 mL/day

Thus, on the basis of this particular experiment, we can be 95 percent
confident that the drug increases average urine production somewhere
between 61 and 439 mL/day. The range of values from 61 to 439 is the
95 percent confidence interval corresponding to this experiment. As
Fig. 7-1A shows, this interval includes the actual change in mean urine
production, pg — Mpia, 200 mL/day.

More Experiments

Of course, there is nothing special about the two samples of 10 people
each selected in the study we just analyzed. Just as the values of the
sample mean and standard deviation vary with the specific random
sample of people we happen to draw, so will the confidence interval we

Figure 7-1 (A} The 95 percent confidence interval for the change in urine produc-
tion produced by the drug using the random samples shown in Fig. 6-1. The interval
contains the true change in urine production, 200 mL/day (indicated by the dashed
line). Since the interval does not include zero (indicated by the solid line), we can
conclude the that drug increases urine output (P < .05). (B) The 95 percent confi-
dence interval for change in urine production computed for the random samples
shown in Fig. 6-2. The interval includes the actual change in urine production
(200 mL/day), but it also includes zero, so that'it is not possible to reject the hypoth-
esis of no drug effect (at the 5 percent level). (C) The 95 percent confidence inter-
vals for 48 more sets of random samples, e.g., experiments, drawn from the two
populations in Fig. 6-1A. All but 3 of the 50 intervals shown in this figure include
the actual change in urine production; 5 percent of all possible 95 percent confi-
dence intervals will not include the 200 mL/day. Of the 50 confidence intervals, 22
include zero, meaning that the data do not permit rejecting the hypothesis of no
difference at the 5 percent level. In these cases, we would make a Type Il error.
Since 45 percent of all possible 95 percent confidence intervals include zero, the
probability of detecting a change in urine productionis 1 — 8 = .55.
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compute from the resulting observations. (This should not be surpris-
ing, since the confidence interval is computed from the sample means
and standard deviations.) The confidence interval we just computed
corresponds to the specific random sample of individuals shown in Fig.
6-1. Had we selected a different random sample of people, say those in
_Fig. 6-2, we would have obtained a different 95 percent confidence in-
terval for the size of the treatment effect.

The individuals selected at random for the experiment in Fig. 6-2
show a mean urine production of 1216 mL/day for the people taking the
placebo and 1368 ml/day for the people taking the drug. The standard
deviations of the two samples are 97 and 263 mL/day, respectively. In
these two samples, the drug increased average urine production by
Xy — X = 1368 — 1216 = 152 mL/day. The pooled estimate of the
population variance is

5% = 12977 + 263?%) = 1982
in which case, A

1982 1982 ’
O o + — 10 —899mL/day

)

So the 95 percent confidence interval for the mean change in urine pro-
duction associated with the sample shown in Fig. 6-2is -

152 — 2.101(89.9) < pry, — Py < 152 + 2.101(89.9)
~35mL/day < py = by < 339 mL/day

This interval, while different from the first one we cdmputed, also in-
cludes the actual mean increase in urine production, 200 mL/day (Fig.
7-1B). Had we drawn this sample rather than the one in Fig. 6-1, we
would have been 95 percent confident that the drug increased average
urine production somewhere between —35 and 339 mL/day. (Note that
this interval includes negative values, indicating that the data do not
permit us to exclude the possibility that the drug decreased as well as
increased average urine production. This observation is the basis for
using confidence intervals to test hypotheses later in this chapter.) In
sum, the specific 95 percent confidence interval we obtain depends on
the specific random sample we happen to select for observation.
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So far, we have seen two such intervals that could arise from
random sampling of the populations in Fig. 6-1; there are more than
10% possible samples of 10 people each, so there are more than 10?7
possible 95 percent confidence intervals. Figure 7-1C shows 48 more
of them, computed by selecting two samples of 10 people each from
the.populations of placebo and drug takers. Of the 50 intervals shown
in Fig. 7-1, all but 3 (about 5 percent) include the value of
200 mL/day, the actual change in average urine production associ-
ated with the drug.

WHAT DOES “CONFIDENCE” MEAN?

We are now ready to attach a precise meaning to the term 95 percent
confident. The specific 95 percent confidence interval associated with a
given set of data will or will not actually include ‘the true size of the
treatment effect, but in the long run 95 percent of all possible 95 per-
cent confidence intervals will include the true difference of mean values
associated with the treatment. As such, it describes not only the size of
the effect but quantifies the certainty with which one can estimate the
size of the treatment effect.

The size of the interval depends on the level of confidence you
want to have that it will actually include the true treatment effect. Since
t, increases as o decreases, requiring a greater and greater fraction of
all possible confidence intervals to cover the true effect will make the
intervals larger. To see this, let us compute the 90 percent, 95 percent,
and 99 percent confidence intervals associated with the data in Fig. 6-1.
To do so, we need only substitute the values of ¢, and ¢, correspond-
ing to v = 18 from Table 4-1 for ¢, in the formula derived above. (We
have already solved the problem for #s.)

For the 90 percent confidence interval, ¢, = 1.734, so the interval
associated with the samples in Fig. 6-1is

250 — 1.734(89.9) < pyy — iy, < 250 + 1.734(89.9)
90 mL/day < pg — My, < 410 mL/day

which, as Fig. 7-2 shows, is narrower than the 95 percent interval. Does
this mean the data now magically yield a more precise estimate of the
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treatment effect? No. If you are willing to accept the risk that 10 per-
cent of all possible confidence intervals will not include the true change
in mean values, you can get by with a narrower interval.

On the other hand, if you want to specify an interval selected from
a population of confidence intervals, 99 percent of which include the
-true change in population means, you compute the confidence interval
with £, = 2.552. The 99 percent confidence interval associated with the
samples in Fig. 6-1 is

250 — 2.552(89.9) < pg, — My < 250 + 2.552(89.9)
21 mL/day < pg, — py, < 479 mL/day

This interval is wider than the other two in Fig. 7-2.
In sum, the confidence interval gives a range that is computed in
the hope that it will include the parameter of interest (in this case, the

‘ L—— Actual change in urine production

95% confidence

T T T T 1

90% confidence

T T T T ml

99% confidence

1 T T T 1
- 260 - 1('10 0 160 200 300 400 500 600 700

Change in daily urine production, mL/day

Figure 7-2 Increasing the level of confidence you wish to have that a confi-
dence interval includes the true treatment effect makes the interval wider. All
the confidence intervals in this figure were computed from the two random
samples shown in Fig. 6-1. The 90 percent confidence interval is narrower than
the 95 percent confidence interval, and the 99 percent confidence interval is
wider. The actual change in urine production, 200 mb/day, is indicated with the
dashed line.
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difference of two population means). The confidence level associated
with the interval (say 95, 90, or 99 percent) gives the percentage of all
such possible intervals that will actually include the true value of the
parameter. A particular interval will or will not include the true value
of the parameter. Unfortunately, you can never know whether or not
that interval does. All you can say is that the chances of selecting an in-
terval that does not include the true value is small (say 5, 10, or 1 per-
cent). The more confidence you wish to have that the interval will cover
the true value, the wider the interval. '

CONFIDENCE INTERVALS CAN-BE USED
TO TEST HYPOTHESES

As already noted, confidence intervals can provide another route to test-
ing statistical hypotheses. This fact should not be surprising because we
use all the same ingredients, the difference of the sample means, the
standard error of the difference of sample means, and the value of ¢ that
corresponds to the biggest o fraction of the possible values defined by
the ¢ distribution with v degrees of freedom.

Given a confidence interval, one cannot say where within the inter-
val the true difference in population means lies. If the confidence inter-
val contains'zero, the evidence represented by the experimental obser-
vations is not sufficient to rule out the possibility that p; — p, = 0,
that is, that w, = p.,, the hypothesis that the 7 test tests. Hence, we can
state the following rule as follows.

If the 100(1 — ) percent confidence interval associated with a set
of data includes zero, there is not sufficient evidence to reject the hy-
pothesis of no effect with P < a. If the confidence interval does not
include zero, there is sufficient evidence to reject the hypothesis of no
effect with P < au. »

Apply this rule to the two examples just discussed. The 95 percent
confidence interval in Fig. 7-1A does not include zero, so we can report
that the drug produced a statistically significant change in urine produc-
tion (P < .05), just as we did using the f test. The 95 percent confidence
interval in Fig. 7-1B includes zero, so the random sample (shown in
Fig. 6-2) used to compute it does not provide sufficient evidence to re-
ject the hypothesis that the drug has no effect. This, too, is the same
conclusion we reached before.
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Of the fifty 95 percent confidence intervals shown in Fig. 7-1,
twenty-two include zero. Hence % = 44 percent of these random sam-
ples do not permit reporting a difference with 95 percent confidence,
i.e., with P < .05. If we looked at all possible 95 percent confidence
intervals computed for these two populations with two samples of
-10 people each, we would find that 45 percent of them include zero,
meaning that we would fail to report a true difference, that is, would
make a Type II error, 45 percent of the time. Hence, B = .45, and the
power of the test is .55, just as before (compare Fig. 6-4).

The confidence-interval approach to hypothesis testing offers two
potential advantages. In addition to permitting you to reject the hypothe-
sis of no effect when the interval does not include zero, it also gives in-
formation about the size of the effect. Thus, if a result reaches statistical
significance more because of a large sample size than because of a large
treatment effect, the confidence interval will show it. In other words, it
will make it easier to recognize effects that can be detected with confi-
dence but are too small to be of clinical or scientific significance.

For example, suppose we wish to study the potential value of a
proposed antihypertensive drug. We select two samples of 100 people
each and administer a placebo to one group and the drug to the other.
The treated group has a mean diastolic pressure of 81 mmHg and a
standard deviation of 11 mmHg; the control (placebo) group has a
mean blood pressure of 85 mmHg and a standard deviation of 9 mmHg.
Are these data consistent with the hypothesis that the diastolic blood
pressure among people taking the drug and placebo were actually no
different? To answer this question, we use the data to complete attest.
The pooled—varlance estimate is

§* = (11% + 9%) = 10?
SO

X, - X 1-
p=% Tk o 8185 = —2.83
5%, ~%,, V(10%/100) + (10%/100)

pla

This value is more negative than —2.61, the critical value of ¢ that
defines the 1 percent most extreme of the ¢ distribution with v =
2(n — 1) = 198 degrees of freedom (from Table 4-1). Thus, we can as-
sert that the drug lowers diastolic blood pressure (P < .01).
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But is this result clinically significant? To gain a feeling for this,
compute the 95 percent confidence interval for the mean difference in
diastolic blood pressure for people taking placebo versus the drug.
Since ¢ 5 for 198 degrees of freedom is (from Table 4-1) 1.973, the con-
fidence interval is

—4 = 1.973(1.42) < py, — Py < —4 + 1.973(1.42)
~6.88 mmHg < pg, — By, < —1.2 mmHg

In other words, we can be 95 percent confident that the drug lowers blood
pressure between 1.2 and 6.8 mmHg. This is not a very large effect, espe-
cially when compared with standard deviations of the blood pressures ob-
served within each of the samples, which are around 10 mmHg. Thus,
while the drug does seem to lower blood pressure on the average, exam-
ining the confidence interval permitted us to see that the size of the effect
is not very impressive. The small value of P was more a reflection of the
sample size than the size of the effect on blood pressure.

This example also points up the importance of examining not only the
P values reported in a study but also the size of the treatment effect com-
pared with the variability within each of the treatment groups. Usually this
requires converting the standard errors of the mean reported in the paper
to standard deviations by multiplying them by the square root of the sam-
ple size. This simple step often shows clinical studies to be of potential in-
terest in illuminating physiological mechanisms but of little value in diag-
nosing or managing a specific patient because of person-to-person
variability.

CONFIDENCE INTERVAL FOR THE
POPULATION MEAN

The procedure we developed above can be used to compute a confi-
dence interval for the mean of population from which a sample was
drawn. The resulting confidence interval is the origin of the rule, stated
in Chapter 2, that the true (and unobserved) mean of the original popu-
lation will lie within 2 standard errors of the mean of the sample mean
for about 95 percent of all possible samples. '

The confidence intervals we computed up to this point are based on
the fact that
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difference of sample means —
difference in population means

~ standard error of difference of sample means

follows the ¢ distribution. It is also possible to show that

_ sample mean — population mean

standard error of mean
follows the ¢ distribution. The equivalent mathematical statement is
X -

X

t =

We can compute the 100(1 — o) percent confidence interval for the
population mean by obtaining the value of ¢, corresponding tov = n —
1 degrees of freedom, in which n is the sample size. Substitute this
value for ¢ in the equation and solve for p (just as we did for ., — i,
earlier).

X—tsz<p<X+1,s3

The interpretation of the confidence interval for the mean is analo-
gous to the interpretation of the confidence interval for the difference of
two means: every possible random sample of a given size can be used
to compute a, say, 95 percent confidence interval for the population
mean, and this same percentage (95 percent) of all such intervals will
include the true population mean.

It is common to approximate the 95 percent confidence 1nterval
with the sample mean plus or minus twice the standard error of the
mean because the values of 75 are approximately 2 for sample sizes
above about 20 (see Table 4-1). This approximate rule of thumb does
underestimate the size of the confidence interval for the mean, however,
especially for the small sample sizes common in biomedical research.

THE SIZE OF THE TREATMENT EFFECT
MEASURED AS THE DIFFERENCE
OF TWO RATES OR PROPORTIONS

It is easy to genefalize the procedures we just developed to permit us to
compute confidence intervals for rates and proportions. In Chapter 5 we
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used the statistic

difference of sample proportions

- standard error of difference of proportions

to test the hypothesis that the observed proportions of events in two
samples were consistent with the hypothesis that the event occurred at
the same rate in the two populations. It is possible to show that even
when the two populations have different proportions of members with
the attribute, the ratio

difference of sample proportions —
difference of population proportions

standard error of difference of sample proportions

is distributed approximately according to the normal distribution so
long as the sample sizes are large enough. ‘

If p, and p, are the actual proportions of members of each of the
two populations with the attribute, and if the corresponding estimates
computed form the samples are p, and p,, respectively,

Py — ) — (pr — py)

sﬁl —b,

We can use this equation to define the 100(1 — «) percent confidence
interval for the difference in proportions by substituting z,, for z in this
equation and solving just as we did before. z, is the value that defines
the most extreme o proportion of the values in the normal distribution;*
Zo = Zos = 1.960 is commonly used, since it is used to define the 95
percent confidence interval. Thus,

(D1 = P2) = 2855, <P1 — P2 < (By = D) + 2,55, 5,
for 100(1 — o) percent of all possible samples.
Difference in Mortality Associated with Anesthesia
for Open-Heart Surgery.
In Chapter 5 we tested the hypothesis that the mortality rates associated

with halothane and morphine anesthesia were no different. What is the

*This value can also be obtained from a ¢ table, e.g., Table 4-1, by taking the value
of ¢ corresponding to an infinite number of degrees of freedom.
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95 percent confidence interval for the difference in mortality rate for
these two agents? ' _

The mortality rates observed with these two anesthetic agents
were 13.1 percent (8 of 61 people) and 14.9 percent (10 of 67 peo-
ple). Therefore, the difference in observed mortality rates is py, —
Pmor = 0.131 — 0.15 = —0.020 and the standard error of the differ-
ence, based on a pooled estimate of the proportion of all patients
who died is,

8+ 10 _
61 + 67

1 1
Spu—bue — /P — ﬁ)( + )
Pito ™ Pinor \/ ho Do

1,1 '
= . - —_— + — = = .
\/14(1 14)(61 67) 062 = 6.2%

p= 14

Therefore, the 95 percent confidence interval for the difference in mor-
tality rates is

(Prio ~ Prmor) — 2055 P+ Poer ~ SPo—Buner (13111; =~ Pmod) T 205580+ Brcr
(Prio = Prmor) — Zo0s St Booe =P < (Prio = Prmov) -
—.020 — 1.960(.062) < s, < —.020 + 1.960(.062) |
—.142 < s, <.102

to ™ Prmor
1o~ Pmor

We can be 95 percent confident that the true difference in mortality
rate lies between a 14.2 percent better rate for morphine and a 10.2
percent better rate for halothane.” Since the confidence interval con-
tains zero, there is not sufficient evidence to reject the hypothesis that
the two anesthetic agents are associated with the same mortality rate.
Furthermore, the confidence interval ranges about equally on both
sides of zero, so there is not even a suggestion that one agent is supe-
rior to the other.

*To include the Yates correction, widen the upper and lower bounds of the confi-
dence interval by ¥%(1/ny, +1/ny,,).
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Difference in Thrombosis with Aspirin in People
Receiving Hemodialysis

Chapter 5 also discussed the evidence that administering low-dose as-
pirin to people receiving regular kidney dialysis reduces the propor-
tion of people who develop thrombosis. Of the people taking the
placebo, 72 percent developed thrombosis, and 32 percent of the peo-
ple taking aspirin did. Given only this information, we would report
that aspirin reduced the proportion of patients who developed throm-
bosis by 40 percent. What is the 95 percent confidence interval for the
improvement?

The standard error of the difference in proportion of patients who
developed thrombosis is .15 (from Chapter 5). So the 95 percent confi-
dence interval for the true difference in proportion of patients who de-
veloped thrombosis is

40 — 1.96(.15) < Ppla — Pasp < 40 + 1.96(.15)
A1 < pyy = Pasp < .69

We can be 95 percenf confident that aspirin reduces the rate of throm-
bosis somewhere between 11 and 69 percent compared with placebo.

How Negative Is a “Negative” Clinical Trial?

Chapter 6 discussed the study of 71 randomized clinical trials that did
not demonstrate. a statistically significant improvement in clinical
outcome (mortality, complications, or the number of patients who
showed no improvement, depending on the study). Most of these trials
involved too few patients to have sufficient power to be confident that
the failure to detect a treatment effect was not due to an inadequate
sample size. To get a feeling for how compatible the data are with the
hypothesis of no treatment effect, let us examine the 90 percent confi-
dence -intervals for the proportion of “successful” cases (the definition
of success varied with the study) for all’ 71 trials. Figure 7-3 shows
these confidence intervals.

All the confidence intervals include zero, so we cannot rule out the
possibility that the treatments had no effect. Note, however, that some



216 CHAPTER 7

1 T 9
L 1
T 1
T ]
]
! T
| 1
l —
I N |
L T L
]
‘ |
3|
|
I ¥
L I i
i |
—
— )
L
|
T —
Favoring jcontrol Favoringjtreatment
1

-60 -40 -20 0 20 40 © 60
Pr—Pc

Figure 7-3 The 90 percent confidence intervals for 71 negative clinical trials.
Since all the intervals contain zero, there is not sufficient evidence that the
success rate is different for the treatment and control groups. Nevertheless,
the data are also compatible with the treatment producing a substantial im-
provement in success rate in many of the trials. (Data from Fig. 2 of J. A.
Freiman, T. C. Chalmers, H. Smith, Jr, and R. R. Keubler, “The Importance of
Beta, the Type Il Error and Sample Size in the Design and Interpretation of the
Randomized Control Trial: Survey of 71 ‘Negative’ Trials,” N. Engl. J. Med.,
299:690-694, 1978.) '
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of the trials are also compatible with the possibility that the treatments
produced sizable improvements in the success rate. Remember that
while we can be 90 percent confident that the true change in proportion
of successes lies in the interval, it could be anywhere. Does this prove
that some of these treatments improved clinical outcome? No. The im-
portant point is that the confidence with which we can assert that there
was no treatment effect is often the same as the confidence with which
we can assert that the treatment produced a sizable improvement. While
the size and location of the confidence interval cannot be used as part of
a formal statistical argument to prove that the treatment had an effect, it
certainly can help you look for trends in the data.

CONFIDENCE INTERVAL FOR RATES
AND PROPORTIONS

It is possible to use the normal distribution to compute approximate
confidence intervals for proportions from observations, so long as the
sample size is large enough to make the approximation reasonably ac-
curate.* When it is not possible to use this approximation, we will com-
pute the exact confidence intervals based on the binomial distribution.
While we will not go into the computational details of this procedure,
we will present the necessary results in graphical form because papers
often present results based on small numbers of subjects. Examining
the confidence-intervals as opposed to only the observed proportion of
patients with a given attribute is especially useful in thinking about
such studies, because a change of a single patient from one group to the
other often makes a large difference in-the observed proportion of pa-
tients with the attribute of interest. ,

Just as there was an analogous way to use the z distribution to relate
the difference of means and the confidence interval for a single sample’
mean, it is possible to show that if the sample size is large enough

__ observed proportion — true proportion
standard error of proportion

*As discussed in Chapter 5, np and n(1 —p) must both exceed about 5, where p is
the proportion of the observed sample having the attribute of interest.



218 ' CHAPTER 7

In other words ‘

approximately follows the normal distribution (in Table 6-4). Hence,
we can use this equation to define the 100(1 — ) percent confidence
interval for the true proportion p with

P25 <p<ptz.s;

The Fraction of Articles with Statistical Errors

From the 1950s through the 1970s, the fraction.of articles published in
medical journals that include errors in the use of statistical procedures
has remained around 50 percent. For example, Sheila Gore and col-
leagues® found that 32 of the 77 original papers published in the British
Medical Journal between January and March 1976 contained at least
one error in their use of statistical procedures. What is the 95 percent
confidence interval for the proportion of all articles published in jour-
nals of comparable quality at that time?

The proportion of articles with errors is p = %77 = 42, and
the standard error of the proportion is s; = V.A2(1 — 42)/77

= .056. Therefore, the 95 percent confidence 1nterva1 is

42 — 1.96(.056) < p < 42 + 1.96(.056)
31<p<.53

How potentially serious are these errors? Gore and colleagues re-
ported that 5 of the 62 analytical reports that made some use of
statistical procedures made some claim in the summary that was

*S. M. Gore, L. G. Jones, and E. C. Rytter, “Misuse of Statistical Methods: Critical
Assessment of Articles in BMJ from January to March 1976, Br. Med. J., 1(6053):85-87,
1977.



CONFIDENCE INTERVALS 219

not supported by the data presented. Thus p = ¥ = .081 and
= V.081(1 — .081)/62 = .035, so the 95 percent confidence interval
for the proportion of papers with conclusions not supported by the data is

081 — 1.960(.035) < p < .081 + 1.960(.035)

or from 1 to 15 percent.

Exact Confidence Intervals for Rates and Proportions

When the sample size or observed proportion is too small for the ap-
proximate confidence interval based on the normal distribution to be re-
liable, you have to compute the confidence interval based on the exact
theoretical distribution of a proportion, the binomial distribution.* Since
results based on small sample sizes with low observed rates of events
turn up frequently in the medical literature, we present the results of
computation of confidence intervals using the binomial distri-bution."

To illustrate how the procedure we followed above can fall apart
when np is below about 5, we consider an example. Suppose a sur-
geon says that he has done 30 operations w1thout a single complica-
tion. His observed complication rate p is % = 0 percent for the
30 specific patients he operated on. Impressive as this is, it is un-
likely that the-surgeon will continue operating forever without a
complication, so the fact that p = 0 probably reflects good luck in
the randomly selected patients who happened to be operated on dur-
ing the period in question. To obtain a better estimate of p, the sur-
geon’s true complication rate, we will compute the 95 percent confi-
dence interval for p.

*The reason we could use the normal distribution here and in Chapter 5 is that for
large enough sample sizes there is little difference between the binomial and normal
distributions. This result is a consequence of the central-limit theorem, discussed in
Chapter 2. For the actual derivation of these results, see W. J. Dixon and F. J. Massey,
Introduction to Statistical Analysis (4th ed.), McGraw-Hill, New York, 1983, sec. 135,
“Binomial Distribution: Proportion,” or B. W. Brown, Jr., and M. Hollander, Statistics: A
Biomedical Introduction, Wiley, New York, 1977, chapter 7, “Statistical Inference for
Dichotomous Variables.”



220 CHAPTER 7

Let us try to apply our existing procedure. Sincep = 0,

. = P —p) _ 0(1~0)=0
? n 30

" and the 95 percent confidence interval is from zero to zero. This result
does not make sense. There is no way that a surgeon can never have a
complication. Obviously, the approximation breaks down.

Figure 7-4 gives a graphical presentation of the 95 percent confi-
dence intervals for proportions. The upper and lower limits are read off
the vertical axis using the pair of curves corresponding to the size of the
sample n used to estimate p at the point on the horizontal axis corre-
sponding to the observed p. For our surgeon, p = 0 and n = 30, so the
95 percent confidence interval for his true complication rate is from 0 to
.10. In other words, we can be 95 percent confident that his true com-
plication rate, based on the 30 cases we happened to observe, is some-
where between 0 and 10 percent.

Now, suppose the surgeon had a single complication. Then p = % =
0.033 and ’

S5 = V.033(1 — .033)/30 = .033

so the 95 percent confidence interval for the true complication rate,
computed using the approximate method, is

33 — 1.96(.033) < p < .33 + 1.96(.033)
—.032 < p < .098

Think about this result for a moment. There is no way a surgeon can
have a negative complication rate. ]

Figure 7-4 gives the exact confidence interval, from 0 to .13, or 0
to 13 percent.* This confidence interval is not too different from that

*When there are no “failures” observed, the approximate upper end of the 95% con-
fidence interval for the true failure rate.is approximately 3/n, where # is the sample size.
For a more extensive discussion of interpreting results when there are no “failures,” see
J. A. Hanley and A. Lippman-Hand, “If Nothing Goes Wrong, Is Everything All Right?
Interpreting Zero Numerators,” JAMA 249:1743 1745, 1983.
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1.0

Lower and upper 95% confidence limits for p
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0 . X 0.6
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Figure 7-4 Graphical presentation of the exact 95 percent confidence intervals
{based on the binomial distribution) for the population proportion. You read this
plot by reading the two limits of the lines defined by the sample size at the point
on the horizontal axis at the proportion of the sample with the attribute of interest
p. (Adapted from C. J. Clopper and E. S. Pearson, “The Use of Confidence or
Fiducial Limits lllustrated in the Case of the Binomial, ” Biometrika, 26:404, 1934.)

computed when there were no complications, as it should be, since
there is little real difference between not having any complications and
having only one complication in such a small sample.

Notice how important sample size is,;especially for small sample
sizes. Had the surgeon been bragging that he had a zero complication
rate on the basis of only 10 cases, the 95 percent confidence interval for
his true complication rate would have extended from zero all the way to
33 percent!
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CONFIDENCE INTERVALS FOR RELATIVE RISK AND
ODDS RATIO*

Because the relatlve risk and odds ratio are ratios, the distributions of
the values of these statistics are not normally distributed. It turns out,
- however, that the logarithm of these ratios is normally distributed.
Therefore, we can use approaches similar to those used with propor-
tions to the logarlthms of the relative risk and odds ratio, then invert the
results to return to the original scale. By convention, statisticians and
epidemiologists use the natural logarithm for these calculations.t Using
the notation in Table 5-14, the natural logarithm of the relative risk,
In RR, is normally distributed with standard error

Nl —all@a+b) 1—cl(c+d
Slanz\/ + 4

a C

Therefore, 4the 100(1 — o) percent confidence interval for the natural
logarithm of the true population In RR is

-

InRR —z,s5, <InRR,, <InRR +z.5,
We convert these estimates back to the original units by applying the
exponential function to the terms in this equation to obtain

eln RR -~ Le¥snrr < RRLrue < el“ RR+Z“S~‘1n RR

Thus, you could test the null hypothesis that the true RR = 1, that the
treatment (or risk factor) had no effect, by computing this conﬁdence
interval and seeing if it included 1.0.

Likewise, the natural logarithm of the odds ratio, OR, is normally
distributed. Using the notation in Table 5-15, the standard error is

Smor = [Vt ot g

*In an introductory course, this section can be skipped without any loss of continuity.

tThe natural logarithm has the base e = 2.71828 . .. rather than 10, which is the
base of the common logarithm. Because e is the base, the natural logarithm and exponen-
tial functions are inverses, i.e., ¢®* = xand In &* = x.
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and the 100(1-e) percent confidence interval for the true odds ratio is

eln OR—¢ S5 or < ORtrue < eln OR+zassl or
This confidence interval can also be used to test the null hypothesis that
the true OR = 1, that exposure to the risk factor is not associated with
an increase in the odds of having the disease.

Difference in Thrombosis with Aspirin in People
Receiving Hemodialysis

Earlier in this chapter we saw how to use a confidence interval to test
* the null hypothesis that there was no difference in the probability of
thrombosis in people receiving aspirin or a placebo. We can also test
this hypothesis by examining the relative risk of thrombosis in this clin-
ical trial. In Chapter 5, we estimated that the relative risk of a thrombo-
sis was .44 in people receiving aspirin compared to people receiving a
placebo. Using the data in Table 5-1, which shows that a = 6, b = 18,
¢ =13, and d = 7, we estimate the standard error of In RR as

1—-6/6+18 1- 13/(13 +7)
SRR = 6 + 13

= .390

To estimate the 95 percent confidence interval, we note that 75 = 1.96
and compute

eln .44 — 1.96:.390 < RRtrue < eln44 1.96-.390

—1 586 < RR < e 057

true

20 < RR,,. < .94

true

Hence, we can be 95 percent confident that the true relative risk of
thrombosis for people taking aspirin compared with placebo is some-
where between .20 and .94. Because this range does not include 1, we
can conclude that aspirin significantly changes the risk of thrombosis,
and prevents thrombosis.

Passive Smoking and Breast Cancer

We can compute the confidence interval for the odds ratio of a pre-
menopausal woman who is exposed to secondhand smoke developing



224 CHAPTER 7

breast cancer using the data in Table 5-16. To compute the 95 percent
confidence interval for this odds ratio, we note that the observed odds
ratio is 2.91 and, from Table 5-16, a = 50, b = 14, ¢ = 43, and
d = 35. Therefore, :

S or = L e
In OR 50 14 43 35

and, so,

eln 2.91-1.96-.378 < RRtrue < eln 2.91—-1.96-378

327 1.809
e’ <RR,. < e

139 < RR,,, < 6.10

Thus, we can be 95 percent confident that the true odds ratio is some-
where between 1.39 and 6.10. Because the 95 percent confidence inter-
val for the true relative risk excludes 1, we conclude that passive smok-
ing significantly increases the odds of breast cancer in premenopausal
women.

CONFIDENCE INTERVAL FOR THE
ENTIRE POPULATION*

So far computed intervals that we can have a high degree of confidence
in will include a population parameter, such as p. or p. It is often desir-
able to determine a confidence interval for the population itself, most
commonly when defining the normal range of some variable. The most
common approach is to take the range defined by 2 standard deviations
about the sample mean on the grounds that this interval contains 95 per-
cent of the members of a population that follows the normal distribu-
tion (Fig. 2-5). In fact, in carefully worded language Chapter 2
suggested this rule. When the sample used to compute the mean and
standard deviation is large (more than 100 to 200 members), this com-
mon rule of thumb is reasonably accurate. Unfortunately, most clinical

*Confidence intervals for the population are also called tolerance limits. The
procedures derived in this section are appropriate for analyzing data obtained from a pop-
ulation that is normally distributed. If the population follows other distributions, there are
alternate procedures for computing confidence intervals for the population.
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studies are based on much smaller samples (of the order of 5 to 20 indi-
viduals). With such small samples, use of this two standard deviations
rule of thumb seriously underestimates the range of values likely to be
included in the population from which the samples were drawn.

For example, Fig. 2-6 showed the population of the heights of all
200 Martians, together with the results of three random samples of 10
Martians each. Figure 2-6A showed that 95 percent of all Martians
have heights between 31 and 49 cm. The mean and standard deviation
of the heights of population of all 200 Martians are 40 and 5 cm, re-
spectively. The three samples illustrated in Fig. 2-6 yield estimates of
the mean of 41.5, 36, and 40 cm, and of the standard deviation of 3.8,
5, and 5 cm, respectively. Suppose we simply compute the range de-
fined by two sample standard deviations above and below the sample
mean with the expectation that this range will include 95 percent of the
population. Figure 7-5A shows the results of this computation for each

A

.35 40 45
Height, cm

®

35 40 45

Height, cm

Figure 7-5 (A) The range defined by the sample mean +2 standard deviations
for the three samples of 10 Martians each shown in Fig. 2-6. Two of the three
resulting ranges do not cover the entire range that includes 95 percent of the
population members (indicated by the vertical lines). {B) The 95 percent confi-
dence intervals for the population, computed as the sample mean *Kgs times
the sample standard deviation covers the actual range that includes 95 percent
of the actual population; 95 percent of all such intervals will cover 95 percent of
the actual population range.
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of the three samples in Fig. 2-6. The light area defines the range of ac-
tual heights that covers 95 percent of the Martians’ heights. Two of the
three samples yield intervals that do not include 95 percent of the pop-
ulation.

This problem arises because both the sample mean and standard
deviation are only estimates of the population mean and standard devia-
tion and so cannot be used interchangeably with the population mean
and standard deviation when computing the range of population values.
To see why, consider the sample in Fig. 2-6B that yielded estimates of
the mean and standard deviation of 36 and 5 cm, respectively. By good
fortune, the estimate of the standard deviation computed from the sam-
ple equaled the population standard deviation. The estimate of the pop-
ulation mean, however, was low. As a result, the interval 2 standard
deviations above and below the sample mean did not reach high enough
to cover 95 percent of the entire population values. Because of the po-
tential errors in the estimates of the population mean and standard devi-
ation, we must be conservative and use a range greater than 2 standard
deviations around the sample mean to be sure of including, say, 95 per-
cent of the entire population. However, as the size of the sample used to
estimate the mean and standard deviation increases, the certainty with
which we can use these estimates to compute the range spanned by the
entire population increases, so we do not have to be as conservative
(i.e., take fewer multiples of the sample standard deviation) when com-
puting an interval that contains a specified proportion of the populatlon
members.

Specifying the confidence interval for the entire population is more
involved than specifying the confidence intervals we have discussed so
far because you must specify both the fraction of the population f you
wish the interval to cover and the confidence you wish to have that any
given interval will cover it. The size of the interval depends on these
two things and the size of the sample used to estimate the mean and
standard. deviation. The 100(1 — o) percent confidence interval for
100f percent of the population is :

X-Ks<X<X+Kys

in which X and s are the sample mean and standard deviation and K, is
the number of sample standard deviations about the sample mean
needed to cover the desired part of the population. Figure 7-6 shows
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Figure 7-6 K5 depends on the size of the sample n used to estimate the mean
and standard deviation and the fraction f of the population you want the interval
to include.

K5 as a function of sample size for various values of f. It plays a role
similar to ¢, or z,.

K, is larger than 7, (which is larger than z,) because it accounts for
uncertainty in the estimates of both the mean and standard deviation,
rather than the mean alone.*

Notice that K, can be much larger than 2 for sample sizes in the
range of 5 to 25, which are common in biomedical reseairch. Thus, sim-
ply taking 2 standard deviations about the mean may substantially un-
derestimate the range of the population from which the samples were
drawn. Figure 7-5B shows the 95 percent confidence interval for 95
percent of the population of Martians’ heights based on the three sam-
ples of 10 Martians each shown in Fig. 2-6. All three of the intervals in-
clude 95 percent of the population.

As Chapter 2 discussed, many people confuse the standard error of
the mean with the standard deviation and consider the rangé defined by

*For a derivation of K that clearly shows how it is related to the corifidence limits
for the mean and standard deviation, see A. E. Lewis, Biostatistics, Reinhold, New York,
1966, chapter 12, “Tolerance Limits and Indices of Discrimination.”
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“sample mean * 2 standard errors of the mean” to encompass about
95 percent of the population. This error leads them to seriously under-
estimate the possible range of values in the population from which the
sample was drawn. We have seen that, for the relatively small sample
sizes common in biomedical research, applying the 2 standard devia-
tions rule may underestimate the range of values in the underlying pop-

ulation as well. .

PROBLEMS

7-1 Find the 90 and 95 percent confidence intervals for the mean number of

‘ authors of articles published in the medical literature in 1946, 1956,
1966, and 1976 using the data from Prob. 2-6.

7-2  Problem 3-1 described an experiment in which women were treated with
a gel containing prostaglandin E, and a placebo gel to see if the active
gel would facilitate softening and dilation of the cervix during an in-
duced labor. One reason for trying to facilitate cervical softening and
dilation is to avoid having to do a cesarean section. C. O’Herlihy and
H. MacDonald (“Influence of Preinduiiction Prostaglandin E, Vaginal Gel
on Cervical Ripening and Labor,” Obstet. Gynecol., 54:708—710, 1979)
observed that 15 percent of the 21 women in the treatment group
required cesarean sections and 23.9 percent of the 21 women in the
control group required cesarean sections. Find the 95 percent confidence
intervals for the percentage of all women having cesarean sections after
receiving each treatment and the difference in cesarean section rate for
all women in the two different groups. Can you be 95 percent confident
that the prostaglandin E, gel reduces the chances that a woman whose
labor is being induced will need to be delivered by a cesarean section?

7-3 Find the 95 percent confidence interval for the difference in the mean du-
ration of labor in women treated with prostaglandin E, gel compared with
women treated with placebo gel using the data in Prob. 3-1. Based on this
confidence interval, is the difference statistically significant with P < .05?

7-4 Find the 95 percent confidence intervals for the proportion of both
groups in Prob. 5-1 for which high-frequency neural modulation was an
effective dental analgesic. Compare this result with the hypothesis tests
computed in Prob. 5-1.

7-S Find the 95 percent confidence intervals for the mean forced midexpira-
tory flows for the different test groups in Prob. 3-2. Use this information
to identify people with different or similar lung function (as we did with
Bonferroni ¢ tests in Chapter 4).
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7-6

7-8
79
7-10
7-11

Find the 95 percent confidence intervals for the percentage of articles
that reported the results of research based on data collected before decid-
ing on the question to be investigated. Use the data in Prob. 5-6.

Use the data in Prob. 2-3 to find the 95 percent confidence interval for 90
and 95 percent of the population of PCB concentrations in Japanese
adults. Plot these intervals together with the observations.

Rework Prob. 5-11 using confidence intervals.

Rework Prob. 5-12 using confidence intervals.

Rework Prob. 5-13 using confidence intervals.

Rework Prob. 5-14 using confidence intervals.
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